Estimation of buoy drifting based on adaptive parameter-varying time scale Kalman filter  被引量:3

在线阅读下载全文

作  者:Han Xue Tian Chai 

机构地区:[1]School of Navigation,Jimei University,Xiamen,People’s Republic of China [2]National and local joint engineering research center of ship aided navigation technology,Jimei University,Xiamen,People’s Republic of China [3]Fujian Shipping Research Institute,Jimei University,Xiamen,People’s Republic of China [4]Xiamen southeast International Shipping Research Center,Jimei University,Xiamen,People’s Republic of China

出  处:《Journal of Control and Decision》2021年第3期353-362,共10页控制与决策学报(英文)

基  金:This work was supported in part by National Natural Science Foundation of China[grant number 51579114];Fujian Provincial Natural Science Foundation Projects[grant number 2018J05085];Research and Cultivation Fund for high level subject of transportation engineering of Jimei University[grant number 202003].

摘  要:To solve Kalman filter with dynamic time scale problem,an adaptive parameter-varying time scale kalman filter(APVTS-KF)is designed.An adaptive mechanism for choosing the covariance of state noise is designed.APVTS-KF is used to estimate the buoy drifting trajectory with different report intervals.Position drifting data of four buoys are used to test the proposed algorithm.The influence of report interval,drifting distance,adaptive factor and noise covariance are analysed and compared.The experimental results and error analysis show that APVTS-KF is better than other algorithms in trajectory estimation.Thus,Kalman filtering can be used for accurate trajectory estimation in the actual situation of buoy drifting with dynamic time intervals.

关 键 词:Kalman filter buoy drift state estimation 

分 类 号:P73[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象