Highway Lane Change Decision-Making via Attention-Based Deep Reinforcement Learning  被引量:3

在线阅读下载全文

作  者:Junjie Wang Qichao Zhang Dongbin Zhao 

机构地区:[1]State Key Laboratory of Management and Control for Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190 [2]School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049,China [3]IEEE

出  处:《IEEE/CAA Journal of Automatica Sinica》2022年第3期567-569,共3页自动化学报(英文版)

基  金:supported in part by the National Natural Science Foundation of China(NSFC)(62173325);the Beijing Municipal Natural Science Foundation(L191002).

摘  要:Dear editor,Deep reinforcement learning(DRL),combining the perception capability of deep learning(DL)and the decision-making capability of reinforcement learning(RL)[1],has been widely investigated for autonomous driving decision-making tasks.In this letter,Fund:supported in part by the National Natural Science Foundation of China(NSFC)(62173325);the Beijing Municipal Natural Science Foundation(L191002).

关 键 词:driving DEEP HAS 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] U463.6[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象