检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jun-fan Xia Yao-long Zhang Bin Jiang 夏俊凡;张耀龙;蒋彬(中国科学技术大学化学物理系,合肥微尺度物质科学国家研究中心,安徽省教育厅表界面化学与能源催化重点实验室,合肥230026)
出 处:《Chinese Journal of Chemical Physics》2021年第6期695-703,I0001,共10页化学物理学报(英文)
基 金:supported by CAS Project for Young Scientists in Basic Research(YSBR-005);the National Natural Science Foundation of China(No.22073089 and No.22033007);Anhui Initiative in Quantum Information Technologies(AHY090200);the Fundamental Research Funds for Central Universities(WK2060000017)。
摘 要:Machine learning potentials are promising in atomistic simulations due to their comparable accuracy to first-principles theory but much lower computational cost.However,the reliability,speed,and transferability of atomistic machine learning potentials depend strongly on the way atomic configurations are represented.A wise choice of descriptors used as input for the machine learning program is the key for a successful machine learning representation.Here we develop a simple and efficient strategy to automatically select an optimal set of linearly-independent atomic features out of a large pool of candidates,based on the correlations that are intrinsic to the training data.Through applications to the construction of embedded atom neural network potentials for several benchmark molecules with less redundant linearly-independent embedded density descriptors,we demonstrate the efficiency and accuracy of this new strategy.The proposed algorithm can greatly simplify the initial selection of atomic features and vastly improve the performance of the atomistic machine learning potentials.
关 键 词:Linearly independent Feature selection Atomic descriptor Machine learning Embedded atom neural network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.248.230