检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Marko Huhtanen Pauliina Uusitalo
机构地区:[1]Department of Electrical and Information Engineering,University of Oulu,Oulu 90570,Finland
出 处:《Science China Mathematics》2022年第1期203-220,共18页中国科学:数学(英文版)
基 金:supported by the Academy of Finland(Grant No.288641)。
摘 要:Two optimal orthogonalization processes are devised toorthogonalize,possibly approximately,the columns of a very large and possiblysparse matrix A∈C^(n×k).Algorithmically the aim is,at each step,to optimallydecrease nonorthogonality of all the columns of A.One process relies on using translated small rank corrections.Another is a polynomial orthogonalization process forperforming the Löwdin orthogonalization.The steps rely on using iterative methods combined,preferably,with preconditioning which can have a dramatic effect on how fast thenonorthogonality decreases.The speed of orthogonalization depends on howbunched the singular values of A are,modulo the number of steps taken.These methods put the steps of the Gram-Schmidt orthogonalizationprocess into perspective regardingtheir(lack of)optimality.The constructions are entirely operatortheoretic and can be extended to infinite dimensional Hilbert spaces.
关 键 词:optimal orthogonalization sparse matrix Gram-Schmidt orthogonalization Lowdin orthogonalization polynomial orthogonalization implicit orthogonalization PRECONDITIONING Gram matrix frame inequality
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249