Optimal orthogonalization processes  

在线阅读下载全文

作  者:Marko Huhtanen Pauliina Uusitalo 

机构地区:[1]Department of Electrical and Information Engineering,University of Oulu,Oulu 90570,Finland

出  处:《Science China Mathematics》2022年第1期203-220,共18页中国科学:数学(英文版)

基  金:supported by the Academy of Finland(Grant No.288641)。

摘  要:Two optimal orthogonalization processes are devised toorthogonalize,possibly approximately,the columns of a very large and possiblysparse matrix A∈C^(n×k).Algorithmically the aim is,at each step,to optimallydecrease nonorthogonality of all the columns of A.One process relies on using translated small rank corrections.Another is a polynomial orthogonalization process forperforming the Löwdin orthogonalization.The steps rely on using iterative methods combined,preferably,with preconditioning which can have a dramatic effect on how fast thenonorthogonality decreases.The speed of orthogonalization depends on howbunched the singular values of A are,modulo the number of steps taken.These methods put the steps of the Gram-Schmidt orthogonalizationprocess into perspective regardingtheir(lack of)optimality.The constructions are entirely operatortheoretic and can be extended to infinite dimensional Hilbert spaces.

关 键 词:optimal orthogonalization sparse matrix Gram-Schmidt orthogonalization Lowdin orthogonalization polynomial orthogonalization implicit orthogonalization PRECONDITIONING Gram matrix frame inequality 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象