Bayesian inference of biomass growth characteristics for sugi(C.japonica)and hinoki(C.obtusa)forests in self-thinned and managed stands  被引量:1

在线阅读下载全文

作  者:Valerie Nicoulaud-Gouin Marc-Andre Gonze Pierre Hurtevent Phillippe Calmon 

机构地区:[1]Institut de Radioprotection et de Surete Nucleaire,St Paul-Lez-Durance,France

出  处:《Forest Ecosystems》2021年第4期1006-1023,共18页森林生态系统(英文版)

基  金:the State financial support managed by the Agence Nationale de la Recherche,allocated in“investissements d’Avenir”framework programme under reference AMORAD,ANR-11-RNSR-0002.

摘  要:Background:Forests are an important sink for atmospheric carbon and could release that carbon upon deforestation and degradation.Knowing stand biomass dynamic of evergreen forests has become necessary to improve current biomass production models.The different growth processes of managed forests compared to self-managed forests imply an adaptation of biomass prediction models.Methods:In this paper we model through three models the biomass growth of two tree species(Japanese cedar,Japanese cypress)at stand level whether they are managed or not(self-thinning).One of them is named self-thinned model which uses a specific self-thinning parameterαand adapted to self-managed forests and an other model is named thinned model adapted to managed forests.The latter is compared to a Mitscherlich model.The self-thinned model takes into account the light competition between trees relying on easily observable parameters(e.g.stand density).A Bayesian inference was carried out to determine parameters values according to a large database collected.Results:In managed forest,Bayesian inference results showed obviously a lack of identifiability of Mitscherlich model parameters and a strong evidence for the thinned model in comparison to Mitscherlich model.In self-thinning forest,the results of Bayesian inference are in accordance with the self-thinning 3/2 rule(α=1.4).Structural dependence between stand density and stand yield in self-thinned model allows to qualifying the expression of biological time as a function of physical time and better qualify growth and mortality rate.Relative mortality rate is 2.5 times more important than relative growth rate after about 40 years old.Stand density and stand yield can be expressed as function of biological time,showing that yield is independent of initial density.Conclusions:This paper addressed stand biomass dynamic models of evergreen forests in order to improve biomass growth dynamic assessment at regional scale relying on easily observable parameters.These models can be used to dynami

关 键 词:Dynamic BIOMASS SELF-THINNING SUGI Hinoki Competition-Density rule 

分 类 号:S718.5[农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象