Impact of Departure Time Uncertainty on Runway Scheduling  

出发时间不确定性对跑道调度的影响

在线阅读下载全文

作  者:ZHANG Qiqian XU Dongxu ZHANG Ying ZHANG Xiaowei 张启钱;徐东旭;张颖;张晓玮(南京航空航天大学民航学院,南京211106)

机构地区:[1]College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,P.R.China

出  处:《Transactions of Nanjing University of Aeronautics and Astronautics》2021年第6期948-958,共11页南京航空航天大学学报(英文版)

基  金:supported by the Open Fund for Graduate Innovation Base of Nanjing University of Aeronautics and Astronautics(No. kfjj20190726)。

摘  要:The flight departure process is affected by various uncertain factors,such as flight delays,scheduling delays and taxi time etc. A reliable and robust departure sequence is very important to the safe and efficient operation for airports. An optimal scheduling model for multi-runway departure considering the arrival aircraft crossing departure runway is developed. A genetic algorithm encoding flight numbers is designed to find a near-optimal solution. After that,further establish a multi-objective dynamic scheduling model and design a hybrid algorithm to solve it,and compare and analyze the results of the two models. A quantitative analysis of departure time based on the kernel density estimation is performed,and Monte Carlo simulations are carried out to explore the impact of flight departure time’s uncertainty on departure scheduling. The results based on historical data from Guangzhou Baiyun Airport are presented,showing the advantage of the proposed model and algorithm.航班离港过程受航班延误、调度延误和滑行时间等各种不确定因素的影响。可靠的离港顺序对机场的安全高效运行至关重要。本文提出了一种考虑进场飞机穿越起飞跑道的多跑道起飞的最优调度模型。设计了一种编码航班号的遗传算法,以找到接近最优的解决方案。之后,进一步建立多目标动态调度模型,并设计一种混合算法对其进行求解,对两个模型的结果进行比较和分析。对基于核密度估计的出发时间进行定量分析,并进行蒙特卡洛模拟,以探讨航班出发时间的不确定性对出发时间的影响。展示的基于广州白云机场历史数据结果显示了该模型和算法的优势。

关 键 词:UNCERTAINTY departure scheduling multi-runway scheduling genetic algorithm 

分 类 号:V351.11[航空宇航科学与技术—人机与环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象