检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王永超 唐求[2] 马俊 邱伟[2] 杨莹莹 Wang Yongchao;Tang Qiu;Ma Jun;Qiu Wei;Yang Yingying(State Grid Xinjiang Electric Power Co.,Ltd.Marketing Service Center,Urumqi 830000,China;College of Electrical and Information Engineering,Hunan University 410082,Changsha,China)
机构地区:[1]国网新疆电力有限公司营销服务中心,乌鲁木齐830000 [2]湖南大学电气与信息工程学院,长沙410082
出 处:《电子测量与仪器学报》2021年第10期209-216,共8页Journal of Electronic Measurement and Instrumentation
基 金:国家电网公司总部科技项目(5230HQ19000F);湖南省研究生科研创新项目(CX20200426)资助。
摘 要:智能电表作为电网的终端设备,其退化情况与工作环境、运行时间等因素密切相关。针对复杂变量条件下智能电表退化情况难以预测的问题,提出一种基于复合核支持向量机(support vector machine,SVM)的智能电表基本误差预测方法。首先对智能电表退化数据进行分析,采用皮尔逊相关性分析找出与智能电表基本误差相关性极强的环境变量。然后,为进一步提取数据退化特征,采用模糊C均值聚类算法对智能电表退化数据进行聚类,确定退化特征向量。最后,基于高斯径向基核函数与多项式核函数构造一种新的复合核SVM模型用以预测智能电表基本误差。结合新疆地区智能电表退化数据对复合核SVM模型性能进行验证,实验结果表明,复合核SVM模型可以准确预测复杂环境下智能电表的基本误差,其预测准确率高于贝叶斯方法、神经网络方法以及经典SVM方法。As the terminal equipment of the power grid,the degradation of smart meters is closely related to factors such as working environment and running time.Aiming at the problem that the degradation of smart meters under complex variable conditions is difficult to predict,a smart meter basic error prediction method based on the composite core support vector machine(SVM)is proposed.First,analyze the degradation data of smart meters,and use Pearson correlation analysis to find environmental variables that are highly correlated with the basic errors of smart meters.Then,in order to further extract the data degradation features,the fuzzy C-means clustering algorithm is used to cluster the smart meter degradation data and determine the degradation feature vector.Finally,based on the Gaussian radial basis kernel function and polynomial kernel function,a new composite kernel SVM model is constructed to predict the basic error of smart meters.The performance of the composite core SVM model is verified by combining the degradation data of smart meters in Xinjiang.The experimental results show that the composite core SVM model proposed in this paper can accurately predict the basic errors of smart meters in complex environments,and its prediction accuracy is higher than that of Bayesian methods.Neural network method and classic SVM method.
关 键 词:智能电表 复合核支持向量机 模糊C均值聚类 基本误差预测
分 类 号:TM933.4[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70