检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:滕云[1] 左浩 尚国政 赵琰[3] 陈哲[4] TENG Yun;ZUO Hao;SHANG Guozheng;ZHAO Yan;CHEN Zhe(Shenyang University of Technology,Shenyang 110870,Liaoning Province,China;State Grid East Inner Mongolia Electric Power Co.,Ltd.,Huhhot 010010,Inner Mongolia Autonomous Region,China;Shenyang Institute of Engineering,Shenyang 110136,Liaoning Province,China;Aalborg University,Depth Energy Technology,Aalborg,DK-9220,Denmark)
机构地区:[1]沈阳工业大学电气工程学院,辽宁省沈阳市110870 [2]国网内蒙古东部电力有限公司,内蒙古呼和浩特010010 [3]沈阳工程学院,辽宁省沈阳市110136 [4]丹麦奥尔堡大学能源技术学院,丹麦奥尔堡DK-9220
出 处:《中国电机工程学报》2021年第24期8384-8396,共13页Proceedings of the CSEE
基 金:国家重点研发计划项目(2017YFB0902100)。
摘 要:针对电-热-气多能源系统中热力和燃气系统管网压力调节与电网无功平衡间的耦合关系,该文提出适用于多能源系统的基于热-气系统能量输运过程无功需求特性的多能源系统无功优化模型。首先,研究多能源系统能量输运过程无功需求特性、各类电源的无功出力特性及其不确定性,建立多能源系统无功平衡及其不确性模型;其次,研究热网、气网能量介质输运管道的压力可调节极限参数及其对应的无功需求容量,建立热网、气网无功可调节容量模型;然后,在考虑多能源系统无功平衡不确定性和源网荷储运行约束条件下,以无功平衡成本及电网电压波动最小为目标,建立多能源系统无功多目标动态进化优化模型。最后,基于电热气多能源系统运行数据,建立综合考虑运行约束和热-气管网约束的多能源系统无功优化仿真模型,仿真结果及分析表明,该文提出的无功优化控制方法,能够充分利用气网和热网无功可调节能力,有效提高多能源系统无功调节容量和电压稳定水平。For electricity, heat and gas multi-energy systems the coupling relationship between heating and gas system pipe network pressure regulation and grid reactive power balance. This paper proposed a grid reactive power optimization model suitable for multi-energy systems, which based on the reactive power demand characteristics of the heat and gas system energy transmission process. First, the reactive power demand characteristics of the energy transmission process of the multi-energy system, the reactive power output characteristics of various power sources and their uncertainty were studied. A reactive power balance and its uncertainty model for multi-energy systems were established. Secondly, the pressure adjustable limit parameters of the energy medium transportation pipelines of the heating network, the gas network and the corresponding reactive power demand capacity were studied. A quantitative model for the reactive power adjustable capacity of heating and gas networks were established. Then,considering the uncertainty of the reactive power balance of the multi-energy system and the constraints of the source-network load-storage operation, the cost of reactive power balance and the minimum fluctuation of grid voltage were taken into consideration. A reactive power multi-objective dynamic evolutionary optimization model for multi-energy systems was established. Finally, based on the operating data of an electric heating gas multi-energy system. A multi-energy system reactive power optimization simulation model that comprehensively considers operating constraints and thermal and gas network constraints was established. The simulation results and analysis showed that the reactive power optimization control method proposed in this paper could make full use of the reactive power adjustable capacity of the gas network and heating network, and effectively improve the reactive power regulation capacity and voltage stability of the multi-energy system.
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222