检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石祥滨 王佳 SHI Xiang-bin;WANG Jia(College of Computer Science,Shenyang Aerospace University,Shenyang 110136,China)
机构地区:[1]沈阳航空航天大学计算机学院,沈阳110136
出 处:《沈阳航空航天大学学报》2021年第6期24-31,共8页Journal of Shenyang Aerospace University
基 金:国家自然科学基金(项目编号:61170185,61602320)。
摘 要:针对目前动作识别方法不能捕获肢体之间关联性关系特征问题,设计了基于肢体子图的图卷积动作识别方法。首先,为了捕获不同肢体的时空特征,将人体骨架图划分为相邻肢体有公共节点的4个肢体子图,分别表示相应的身体部位;其次,为了捕获不同肢体之间内在的关联性特征,设计了组合肢体子图,分别对肢体子图和组合肢体子图进行空间卷积,得到肢体的空间动作特征和空间关联性特征,通过公共节点聚合的空间特征,再对聚合特征进行时间卷积;最后,在训练阶段,为了优化模型,在每个时空单元中加入了残差结构,有效避免了因梯度消失导致子图特征值丢失的问题。在NTU-RGB+D和HDM05人体骨架数据集上验证了本模型的有效性。To solve the problem that current motion recognition methods fail to capture the correlation features between limbs,this paper proposed a graph convolution action recognition method based on limb subgraph.First in order to capture the temporal and spatial characteristics of different limbs,this paper divided the human skeleton diagram into four limb subgraphs with common nodes of adjacent limbs,which represented the corresponding body parts,respectively.Second,for the sake of capturing the intrinsic relevance features between different limbs,acombined limb subgraph was designed,where the spatial motion features and spatial relevance features of limbs were obtained by spatial convolution of limb subgraph and combined limb subgraph respectively.The spatial features aggregated by common nodes are then temporal convolved.In the last training stage,to optimize the model,the residual structure was added to each spatial-temporal unit,which effectively avoided the loss of subgraph eigenvalues caused by gradient disappearance.The validity of the model was verified on NTU-RCB+D and HDM05 human skeleton data sets.
关 键 词:动作识别 组合肢体子图 肢体关联性特征 残差结构 时空特征 图卷积
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90