兰州地区区域加权平均温度模型构建方法研究  被引量:6

Research on the method of constructing the regional weighted average temperature model in Lanzhou area

在线阅读下载全文

作  者:王瀚弘 魏冠军 张幸 梁斌 WANG Hanhong;WEI Guangjun;ZHANG Xing;LIANG Bin(Faculty of Geomatics Lanzhou Jiaotong University,Lanzhou 730070,China;National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730070,China;Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730070,China)

机构地区:[1]兰州交通大学测绘与地理信息学院,兰州730070 [2]地理国情监测技术应用国家地方联合工程研究中心,兰州730070 [3]甘肃省地理国情监测工程实验室,兰州730070

出  处:《导航定位学报》2022年第1期90-96,129,共8页Journal of Navigation and Positioning

基  金:国家自然科学基金项目(41964008);兰州交通大学优秀平台项目(201806)。

摘  要:针对贝维斯(Bevis)模型在兰州地区适用性差的问题,提出了利用2014—2018年全球气候监测数据集(ERA5)的再分析数据,结合榆中站探空数据,采用线性回归的方法构建适用于兰州地区的单因子模型和双因子模型,并与Bevis模型和龚邵琦模型进行反演大气可降水量对比分析。实验结果表明:新构建的单因子模型和双因子模型精度整体优于Bevis模型,将其用于反演大气可降水量时,对比Bevis模型和龚邵琦模型,新构建的单、双因子模型与实际降水量更接近,可以达到地基全球卫星导航系统(GNSS)反演大气可降水量的要求。In view of the poor applicability of the Bevis model in Lanzhou,it is proposed to use the 2014-2018 ERA5 reanalysis data combined with the Yuzhong station sounding data,and use linear regression to construct a single-factor model and a two-factor model suitable for Lanzhou.Compare and analyze the inversion of atmospheric precipitation with the Bevis model and Gong Shaoqi model.The experimental results show that the accuracy of the newly constructed single-factor model and the two-factor model is better than the Bevis model.When it is used to retrieve the atmospheric precipitation,compare the Bevis model with the Gong Shaoqi model,and the newly constructed single-and two-factor model is closer to the actual precipitation and can meet the requirements of ground-based Global Navigation Satellite System(GNSS)inversion of atmospheric precipitation.

关 键 词:加权平均温度 模型区域化 ERA5再分析资料 大气可降水量 精度分析 

分 类 号:P228[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象