Symbol Detection Based on Temporal Convolutional Network in Optical Communications  

在线阅读下载全文

作  者:Yingzhe Luo Jianhao Hu 

机构地区:[1]Key Laboratory of Science and Technology on Communication,University of Electronic and Science Technology of China,Chengdu 611731,China

出  处:《China Communications》2022年第1期284-292,共9页中国通信(英文版)

基  金:supported by National Key Research and Development Plan(2018YFB1801500);Manned Space Pre-research Project(N0.060501)。

摘  要:Deep learning(DL)is one of the fastest developing areas in artificial intelligence,it has been recently gained studies and application in computer vision,automatic driving,automatic speech recognition,and communication.This paper uses the DL method to design a symbol detection algorithm in receiver for optical communication systems.The proposed DL based method is implemented by a non-causal temporal convolutional network(ncTCN),which is a convolutional neural network and appropriate for sequence processing.Meanwhile,we adopt three methods to realize the training process for multiple signal-to-noise ratios of the AWGN channel.Furthermore,we apply two nonlinear activation functions for the noise robustness to the proposed ncTCN.Without losing generality,we apply the ncTCN-based receiver to the 16-ary quadrature amplitude modulation optical communication system in the simulation experiment.According to the experiment results,the proposed method can obtain some bit error rate performance gain compared to some conventional receivers.

关 键 词:deep learning optical communicaitons quadrature amplitude modulation symbol detection 

分 类 号:TN929.1[电子电信—通信与信息系统] TP183[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象