检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴选昆 颜延[2] 贾振华[1] 白雪丽 王磊[2] Wu Xuankun;Yan Yan;Jia Zhenhua;Bai Xueli;Wang Lei(School of Computer Science,North China Institute of Aerospace Engineering,Langfang Hebei 065000,China;Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen Guangdong 518055,China)
机构地区:[1]北华航天工业学院计算机学院,河北廊坊065000 [2]中国科学院深圳先进技术研究院,广东深圳518055
出 处:《计算机应用研究》2022年第2期356-360,共5页Application Research of Computers
基 金:廊坊市科技局资助项目(2018011051)。
摘 要:使用脑网络图的方法分析脑电功能连接存在阈值选择、忽略了脑电图动力学特性的问题。针对这一问题,提出了一种使用拓扑动态建模的方法来分析脑电功能连接矩阵,以提高心算任务分类识别正确率。该方法首先将功能连接矩阵转换为无向加权图,然后使用持续同调工具来构建不同的复形,记录拓扑动态过程中形成的不同阶的同调特征,形成持续图,最后使用持续景观图特征作为分类特征,输入到随机森林分类器进行心算状态识别。在心算状态识别和心算质量分类两个任务中分别获得了最高99.26%、99.20%的识别准确率,97.87%、99.80%的敏感性,以及99.78%、97.64%的特异性,并且在跨个体验证实验中分别获得了66.81%、66.85%的准确率。实验结果表明,该方法能充分考虑所有可能的阈值,有效提取脑电功能连接的分类信息,实现脑电心算状态自动识别。Using the method of brain network graph to analyze EEG functional connectivity has the problems of threshold selection and ignoring brain dynamic.To solve this problem,This paper proposed a method of using topological dynamic mode-ling to analyze the EEG functional connectivity matrix,which improved the accuracy of classification and recognition of mental arithmetic tasks.Firstly,it mapped the functional connectivity matrix to an undirected weighted graph.Then it used the persistent Homology Toolbox to construct different complexes and record the different levels of homology features formed in this topological dynamic process to form the persistence diagrams.Finally,it calculated the persistence landscape features as the input feature of the random forest classifier for mental state recognition.In the two task of mental arithmetic state recognition and mental arithmetic quality classification,the proposed algorithm obtained the highest recognition accuracy at 99.26%and 99.20%,sensitivity at 97.87%and 99.80%and specificity at 99.78%and 97.64%,respectively,and accuracy at 66.81%and 66.85%in the cross-individual verification experiment.Experimental results show that the proposed algorithm is fully considered all possible thresholds and effectively extracts the classification information of EEG functional connectivity to implement the automatic recognition of EEG mental arithmetic state.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13