Convolutional neural network-assisted recognition of nanoscale L1_(2) ordered structures in face-centred cubic alloys  被引量:1

在线阅读下载全文

作  者:Yue Li Xuyang Zhou Timoteo Colnaghi Ye Wei Andreas Marek Hongxiang Li Stefan Bauer Markus Rampp Leigh T.Stephenson 

机构地区:[1]Max-Planck Institut für Eisenforschung GmbH,Max-Planck-Straße 1,40237 Düsseldorf,Germany [2]Max Planck Computing and Data Facility,Gießenbachstraße 2,85748 Garching,Germany [3]State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,100083 Beijing,China [4]Max Planck Institute for Intelligent Systems,Max-Planck-Ring 4,72076 Tübingen,Germany

出  处:《npj Computational Materials》2021年第1期60-68,共9页计算材料学(英文)

摘  要:Nanoscale L12-type ordered structures are widely used in face-centered cubic(FCC)alloys to exploit their hardening capacity and thereby improve mechanical properties.These fine-scale particles are typically fully coherent with matrix with the same atomic configuration disregarding chemical species,which makes them challenging to be characterized.Spatial distribution maps(SDMs)are used to probe local order by interrogating the three-dimensional(3D)distribution of atoms within reconstructed atom probe tomography(APT)data.However,it is almost impossible to manually analyze the complete point cloud(>10 million)in search for the partial crystallographic information retained within the data.Here,we proposed an intelligent L1_(2)-ordered structure recognition method based on convolutional neural networks(CNNs).The SDMs of a simulated L1_(2)-ordered structure and the FCC matrix were firstly generated.These simulated images combined with a small amount of experimental data were used to train a CNN-based L1_(2)-ordered structure recognition model.Finally,the approach was successfully applied to reveal the 3D distribution of L1_(2)–typeδ′–Al3(LiMg)nanoparticles with an average radius of 2.54 nm in a FCC Al-Li-Mg system.The minimum radius of detectable nanodomain is even down to 5Å.The proposed CNN-APT method is promising to be extended to recognize other nanoscale ordered structures and even more-challenging short-range ordered phenomena in the near future.

关 键 词:ALLOYS ORDERED CUBIC 

分 类 号:TG13[一般工业技术—材料科学与工程] TB383[金属学及工艺—合金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象