检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yue Li Xuyang Zhou Timoteo Colnaghi Ye Wei Andreas Marek Hongxiang Li Stefan Bauer Markus Rampp Leigh T.Stephenson
机构地区:[1]Max-Planck Institut für Eisenforschung GmbH,Max-Planck-Straße 1,40237 Düsseldorf,Germany [2]Max Planck Computing and Data Facility,Gießenbachstraße 2,85748 Garching,Germany [3]State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,100083 Beijing,China [4]Max Planck Institute for Intelligent Systems,Max-Planck-Ring 4,72076 Tübingen,Germany
出 处:《npj Computational Materials》2021年第1期60-68,共9页计算材料学(英文)
摘 要:Nanoscale L12-type ordered structures are widely used in face-centered cubic(FCC)alloys to exploit their hardening capacity and thereby improve mechanical properties.These fine-scale particles are typically fully coherent with matrix with the same atomic configuration disregarding chemical species,which makes them challenging to be characterized.Spatial distribution maps(SDMs)are used to probe local order by interrogating the three-dimensional(3D)distribution of atoms within reconstructed atom probe tomography(APT)data.However,it is almost impossible to manually analyze the complete point cloud(>10 million)in search for the partial crystallographic information retained within the data.Here,we proposed an intelligent L1_(2)-ordered structure recognition method based on convolutional neural networks(CNNs).The SDMs of a simulated L1_(2)-ordered structure and the FCC matrix were firstly generated.These simulated images combined with a small amount of experimental data were used to train a CNN-based L1_(2)-ordered structure recognition model.Finally,the approach was successfully applied to reveal the 3D distribution of L1_(2)–typeδ′–Al3(LiMg)nanoparticles with an average radius of 2.54 nm in a FCC Al-Li-Mg system.The minimum radius of detectable nanodomain is even down to 5Å.The proposed CNN-APT method is promising to be extended to recognize other nanoscale ordered structures and even more-challenging short-range ordered phenomena in the near future.
分 类 号:TG13[一般工业技术—材料科学与工程] TB383[金属学及工艺—合金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30