Machine learning method for tight-binding Hamiltonian parameterization from ab-initio band structure  被引量:2

在线阅读下载全文

作  者:Zifeng Wang Shizhuo Ye Hao Wang Jin He Qijun Huang Sheng Chang 

机构地区:[1]Key Laboratory of Artificial Micro-and Nano-Structures of Ministry of Education and School of Physics and Technology,Wuhan University,430072 Wuhan,Hubei,People’s Republic of China

出  处:《npj Computational Materials》2021年第1期79-88,共10页计算材料学(英文)

基  金:We acknowledge support from the National Natural Science Foundation of China(61874079,62074116,81971702,and 61774113);the Wuhan Research Program of Application Foundation(2018010401011289);and the Luojia Young Scholars Program.

摘  要:The tight-binding(TB)method is an ideal candidate for determining electronic and transport properties for a large-scale system.It describes the system as real-space Hamiltonian matrices expressed on a manageable number of parameters,leading to substantially lower computational costs than the ab-initio methods.Since the whole system is defined by the parameterization scheme,the choice of the TB parameters decides the reliability of the TB calculations.The typical empirical TB method uses the TB parameters directly from the existing parameter sets,which hardly reproduces the desired electronic structures quantitatively without specific optimizations.It is thus not suitable for quantitative studies like the transport property calculations.The ab-initio TB method derives the TB parameters from the ab-initio results through the transformation of basis functions,which achieves much higher numerical accuracy.However,it assumes prior knowledge of the basis and may encompass truncation error.Here,a machine learning method for TB Hamiltonian parameterization is proposed,within which a neural network(NN)is introduced with its neurons acting as the TB matrix elements.This method can construct the empirical TB model that reproduces the given ab-initio energy bands with predefined accuracy,which provides a fast and convenient way for TB model construction and gives insights into machine learning applications in physical problems.

关 键 词:HAMILTONIAN SYSTEM assume 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象