检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rama K.Vasudevan Maxim Ziatdinov Lukas Vlcek Sergei.V.Kalinin
机构地区:[1]Center for Nanophase Materials Sciences,Oak Ridge,TN 37831,USA [2]Computational Sciences and Engineering Division,Oak Ridge,TN 37831,USA [3]Materials Science and Technology Division,Oak Ridge National Laboratory,Oak Ridge,TN 37831,USA [4]Present address:Bayer,St.Louis,MO 63141,USA
出 处:《npj Computational Materials》2021年第1期133-138,共6页计算材料学(英文)
基 金:The work was supported by the U.S.Department of Energy,Office of Science,Materials Sciences and Engineering Division(S.V.K.,L.V.,R.K.V.).
摘 要:Deep neural networks(‘deep learning’)have emerged as a technology of choice to tackle problems in speech recognition,computer vision,finance,etc.However,adoption of deep learning in physical domains brings substantial challenges stemming from the correlative nature of deep learning methods compared to the causal,hypothesis driven nature of modern science.We argue that the broad adoption of Bayesian methods incorporating prior knowledge,development of solutions with incorporated physical constraints and parsimonious structural descriptors and generative models,and ultimately adoption of causal models,offers a path forward for fundamental and applied research.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49