High performance Wannier interpolation of Berry curvature and related quantities with WannierBerri code  被引量:1

在线阅读下载全文

作  者:Stepan S.Tsirkin 

机构地区:[1]Department of Physics,University of Zurich,Winterthurerstrasse 190,Zurich CH-8057,Switzerland

出  处:《npj Computational Materials》2021年第1期293-301,共9页计算材料学(英文)

基  金:I acknowledge support from the Swiss National Science Foundation(grant number:PP00P2_176877);the NCCR Marvel and the European Union’s Horizon 2020 research and innovation program(ERC-StG-Neupert-757867-PARATOP).

摘  要:Wannier interpolation is a powerful tool for performing Brillouin zone integrals over dense grids of k points,which are essential to evaluate such quantities as the intrinsic anomalous Hall conductivity or Boltzmann transport coefficients.However,more complex physical problems and materials create harder numerical challenges,and computations with the existing codes become very expensive,which often prevents reaching the desired accuracy.In this article,I present a series of methods that boost the speed of Wannier interpolation by several orders of magnitude.They include a combination of fast and slow Fourier transforms,explicit use of symmetries,and recursive adaptive grid refinement among others.The proposed methodology has been implemented in the python code WannierBerri,which also aims to serve as a convenient platform for the future development of interpolation schemes for other phenomena.

关 键 词:INTERPOLATION QUANTITIES Wannier 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象