Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models  

在线阅读下载全文

作  者:Elisabeth J.Schiessler Tim Würger Sviatlana V.Lamaka Robert H.Meißner Christian J.Cyron Mikhail L.Zheludkevich Christian Feiler Roland C.Aydin 

机构地区:[1]Institute of Material Systems Modeling,Helmholtz-Zentrum Hereon,Geesthacht,Germany [2]Institute of Surface Science,Helmholtz-Zentrum Hereon,Geesthacht,Germany [3]Institute of Polymers and Composites,Hamburg University of Technology,Hamburg,Germany [4]Institute for Continuum and Material Mechanics,Hamburg University of Technology,Hamburg,Germany [5]Institute for Materials Science,Faculty of Engineering,Kiel University,Kiel,Germany

出  处:《npj Computational Materials》2021年第1期1783-1791,共9页计算材料学(英文)

基  金:Funding by the Helmholtz Association is gratefully acknowledged.T.W.and C.F.gratefully acknowledge funding by the Deutscher Akademischer Austauschdienst(DAAD,German Academic Exchange Service)via Projektnummer 57511455;R.M.gratefully acknowledges funding by the Deutsche Forschungsgemeinschaft(D.F.G.,German Research Foundation)via Projektnummer 192346071-SFB 986 and Projektnummer 390794421-GRK 2462.

摘  要:The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules.However,an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools.Herein,we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds.One is based on the classical statistical tool of analysis of variance,the other one based on random forests.We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41.In particular,we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors.Finally,we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.

关 键 词:corrosion ALLOY MAGNESIUM 

分 类 号:TG13[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象