检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董殿敏 刘克[1] 刘祎冉[1] DONG Dianmin;LIU Ke;LIU Yiran(SinoSteel Luoyang Institute of Refractories Research Co.,Ltd.,Luoyang 471000,China)
机构地区:[1]中钢集团洛阳耐火材料研究院有限公司,河南洛阳471000
出 处:《计算机测量与控制》2022年第1期47-51,59,共6页Computer Measurement &Control
摘 要:为了解决耐火材料耐火度测量结果的准确性,测量过程的直观性、智能化及非接触性,基于机器视觉技术,设计并实现了一款影像式耐火度检测系统;系统选用可二次开发工业摄像机和高性能的视觉控制器捕捉测试场景的图像信息,图像信息通过网络接口传送到实验室的工控机上;通过硬件定位与软件定位相结合,将被测个体一一分离;利用图像分析算法对被测个体图像进行有效信息提取;通过图像跟踪技术,对被测个体进行实时跟踪与识别;现场实验表明:基于机器视觉的耐火度检测系统能够实时准确地完成耐火度检测,检测误差不超过±5℃,满足GB/T 7322-2017对耐火度检测的要求。In order to solve the problem of the accuracy of refractoriness test results,the intuitiveness,intelligence and non-contact of test process,an image type refractoriness tester system is designed and implemented based on machine vision technology;The system uses industrial camera and high-performance visual controller to capture the image information of the test scene,and the image information is transmitted to the computer of the laboratory through wireless network;Through the combination of mechanical and software positioning,the tested individuals are separated one by one;The image analysis algorithm is used to extract the effective information of the tested individual image;Through the image tracking technology,the real-time tracking and recognition of the tested individuals are carried out;Field experiments show that refractoriness tester system based on machine vision can complete refractoriness test accurately in real time,and the detection error is less than ±5 ℃,meeting the requirements of GB/T 7322-2017 for refractoriness test.
分 类 号:TP23[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30