利用重归一化Numerov方法研究超冷双原子碰撞  

Ultracold atom-atom collisions by renormalized Numerov method

在线阅读下载全文

作  者:白净[1] 谢廷 Bai Jing;Xie Ting(Department of Electronic and Electrical Engineering,Dalian Vocation&Technical College,Dalian 116035,China;State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China)

机构地区:[1]大连职业技术学院电气电子工程学院,大连116035 [2]中国科学院大连化学物理研究所,分子反应动力学国家重点实验室,大连116023

出  处:《物理学报》2022年第3期101-106,共6页Acta Physica Sinica

摘  要:采用重归一化Numerov算法求解关于超低温双原子碰撞问题的非含时薛定谔方程组.以^(39)K-^(133)Cs碰撞为例,研究了超低温下双原子Feshbach共振的性质.结果表明,重归一化Numerov算法可以很精确地描述超冷条件下碰撞过程.与改进的logarithmic derivative算法相比,在同等参数条件下,重归一化Numerov方法在计算效率上虽然有一定劣势,但在大格点步长参数范围内有着更好的稳定性.提出重归一化Numerov和logarithmic derivative算法相结合的传播方法,在保证结果精度的同时大大减少了计算时间.此项算法也可以应用于求解任意温度下的两体碰撞耦合薛定谔方程组.The renormalized Numerov algorithm is applied to solving time-independent Schrödinger equation relating to atom-atom collisions at ultralow temperature.The proprieties of Feshbach resonance in ^(39)K-^(133)Cs collisions are investigated as an example.The results show that the renormalized Numerov method can give excellent results for ultracold colliding process.In contrast to improved log derivative method,the renormalized Numerov method displays a certain weakness in computational efficiency under the same condition.However,it is much stable in a wide range of grid step size.Hence a new propagating method is proposed by combining renormalized Numerov and logarithmic derivative method which can save computational time with a better accuracy.This algorithm can be used to solve close-coupling Schrödinger equation at arbitrary temperature for two-body collisions.

关 键 词:重归一化Numerov方法 超低温 FESHBACH共振 

分 类 号:O562.5[理学—原子与分子物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象