检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李锐
机构地区:[1]湖南科技大学数学与计算科学学院,湖南湘潭411201
出 处:《工业控制计算机》2022年第1期47-49,51,共4页Industrial Control Computer
摘 要:对工业机械设备的状态进行及时监测,可以极大程度地降低企业因工业设备故障带来的损失。以传统的设备状态监测方法为基础,结合机器学习中的SVM支持向量机算法与Clara聚类算法,首次提出了基于SVM-Clara模型的机械设备状态监测方法。通过仿真实验,首先得到了SVM-Clara模型的最高效率为96.9%,最佳训练数据量为7000,此时模型最高的聚类效率为32.07%;接着再与传统的三种机械设备状态监测方法进行横向对比,得出SVM-Clara模型的理论准确率为95.8333%,证明了基于SVM-Clara模型的机械设备状态监测方法的准确性与高效性。Timely monitoring of the state of industrial machinery and equipment can greatly reduce the loss caused by industrial equipment failure.In this paper,based on the traditional equipment condition monitoring method,combining the SVM support vector machine algorithm and Clara clustering algorithm in machine learning,a mechanical equipment condition monitoring method based on SVM-CLARA model is proposed for the first time.Through the simulation experiment, the maximum efficiency of SVM-CLARA model is 96.9%,and the optimal training data amount is 7000.At this time,the maximum clustering efficiency of the model is 32.07%.Then compared with the three traditional mechanical equipment state monitoring methods,the theoretical accuracy of SVM-CLARA model is 95.8333%,which proves the accuracy and efficiency of the mechanical equipment state monitoring method based on SVM-CLARA model.
关 键 词:状态监测 信号处理 SVM支持向量机 Clara算法
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173