检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁湘陵 杨高波 赵险峰[3,4] 谷庆 熊义毛 DING Xiangling;YANG Gaobo;ZHAO Xianfeng;GU Qing;XIONG Yimao(School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan,Hunan 411201,China;College of Computer and Communication,Hunan University,Changsha,Hunan 410082,China;State Key Laboratory of Information Security,Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China;School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100093,China;Guangdong Provincial Key Laboratory of Information Security Technology,Guangzhou,Guangdong 510000,China)
机构地区:[1]湖南科技大学计算机科学与工程学院物联网工程系,湖南湘潭411201 [2]湖南大学信息科学与工程学院通信工程系,湖南长沙410082 [3]中国科学院信息工程研究所信息安全国家重点实验室,北京100093 [4]中国科学院大学网络空间安全学院,北京100093 [5]广东省信息安全技术重点实验室,广东广州510000
出 处:《信号处理》2021年第12期2371-2389,共19页Journal of Signal Processing
基 金:国家重点研发计划(2019QY2202,2020AAA0140000,2019QY(Y)0207);湖南省自然科学基金面上项目(2020JJ4029);信息安全国家重点实验室开放课题(2021-ZD-07);广东省信息安全技术重点实验室开放基金(2020B1212060078)。
摘 要:数字视频伪造被动取证技术直接依据已获得的视频数据本身来判别其真实性,具有更好的适应性,逐渐成为取证研究领域的主流。为了从整体上梳理与描述数字视频伪造被动取证技术,分析了常见的视频伪造操作的特点和它们遗留的痕迹以及对视频被动取证的影响,从取证手段和采用技术2个角度,归纳与总结了基于数字视频来源、基于视频篡改遗留痕迹、基于深度学习框架和基于原始视频特征表征等视频被动取证的典型方法,并详细地探讨了视频伪造被动取证领域面临的挑战和未来的发展趋势。The video forgery passive forensics can directly distinguish the authenticity and integrity of the obtained video by utilizing the tampering traces without the aid of any prior axillary information such as digital watermark or perceptual hash signature. Thus, it has better adaptability and has become an important topic in the field of information security. In this survey, the characteristics of universal video forgery operations, their left tampered traces and influences to video passive forensics were in-depth analyzed. From two aspects of forensics strategy and techniques used, we discuss typical algorithms and methods in passive video forensics, including video source identification based, forgeries trails based, deep learning based, original video feature representation based techniques. Each of these categories of video forensics is summarized in detail, along with a critical analysis of the state of the art. The potential research directions and challenges of video passive forensics field are also investigated in detail.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.158.217