Best Proximity Point Theorems for p-Proximalα-η-β-Quasi Contractions in Metric Spaces with w_(0)-Distance  

在线阅读下载全文

作  者:Mengdi LIU Zhaoqi WU Chuanxi ZHU Chenggui YUAN 

机构地区:[1]Department of Mathematics,Nanchang University,Jiangxi 330031,P.R.China [2]Department of Mathematics,Swansea University,Singleton Park SA28PP,UK

出  处:《Journal of Mathematical Research with Applications》2022年第1期95-110,共16页数学研究及应用(英文版)

基  金:Supported by the National Natural Science Foundation of China(Grant Nos.12161056,11701259,11771198);the Natural Science Foundation of Jiangxi Province(Grant No.20202BAB201001)。

摘  要:In this paper,we propose a new class of non-self mappings called p-proximalα-η-β-quasi contraction,and introduce the concepts ofα-proximal admissible mapping with respect toηand(α,d)regular mapping with respect toη.Based on these new notions,we study the existence and uniqueness of best proximity point for this kind of new contractions in metric spaces with w;-distance and obtain a new theorem,which generalize and complement the results in[Ayari,M.I.et al.Fixed Point Theory Appl.,2017,2017:16]and[Ayari,M.I.et al.Fixed Point Theory Appl.,2019,2019:7].We give an example to show the validity of our main result.Moreover,we obtain several consequences concerning about best proximity point and common fixed point results for two mappings,and we present an application of a corollary to discuss the solutions to a class of systems of Volterra type integral equations.

关 键 词:best proximity point p-proximalα-η-βquasi contraction w_(0)-distance α-proximal admissible mapping with respect toη  d)regular mapping with respect toη 

分 类 号:O177.91[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象