检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:David A.Wood
机构地区:[1]DWA Energy Limited,25 Badgers Oak,Bassingham,Lincoln LN59JP,United Kingdom
出 处:《Artificial Intelligence in Agriculture》2021年第1期24-42,共19页农业人工智能(英文)
摘 要:An optimized data-matching machine learning algorithm is developed to provide high-prediction accuracy of total burned areas for specific wildfire incidents.It is applied to a well-studied forest-fire dataset from Portugal Montesinho Natural Park considering 13 input variables.The total burned area distribution of the 517 burn events in that dataset is highly positively skewed.The model is transparent and avoids regressions and hidden layers.This increases its detailed datamining capabilities.It matches the highest burned-area prediction accuracy achieved for this datasetwith a wide range of traditionalmachine learning algorithms.The two-stage prediction process provides informative feature selection that establishes the relative influences of the input variables on burned-area predictions.Optimizing with mean absolute error(MAE)and root mean square error(RMSE)as separate objective functions provides complementary information with which to data mine each total burnedarea incident.Such insight offers potential agricultural,ecological,environmental and forestry benefits by improving the understanding of the key influences associated with each burn event.Data mining the differential trends of cumulative absolute error and squared error also provides detailed insight with which to determine the suitability of each optimized solution to accurately predict burned-areas events of specific types.Such prediction accuracy and insight leads to confidence in how each prediction is derived.It provides knowledge to make appropriate responses and mitigate specific burn incidents,as they occur.Such informed responses should lead to short-term and long-term multi-faceted benefits by helping to prevent certain types of burn incidents being repeated or spread.
关 键 词:Wildfire feature selection Non-regression machine learning Data-matched prediction accuracy Cumulative absolute error differentials Predicting highly skewed distributions
分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49