基于Hadoop分布式文件系统的地震勘探大数据样本采集及存储优化  被引量:13

HDFS-based collection and storage optimization of seismic exploration big data samples

在线阅读下载全文

作  者:杨河山 张世明[2] 曹小朋 李春雷 姜兴兴 YANG Heshan;ZHANG Shiming;CAO Xiaopeng;LI Chunlei;JIANG Xingxing(Exploration and Development Research Institute,Shengli Oilfield Company,SINOPEC,Dongying City,Shandong Province,257015,China;Shengli Oil Production Plant,Shengli Oilfield Company,SINOPEC,Dongying City,Shandong Province,257051,China)

机构地区:[1]中国石化胜利油田分公司勘探开发研究院,山东东营257015 [2]中国石化胜利油田分公司胜利采油厂,山东东营257051

出  处:《油气地质与采收率》2022年第1期121-127,共7页Petroleum Geology and Recovery Efficiency

基  金:中国石化科技攻关项目“老油田开发大数据应用系统集成与示范应用”(P20071-4)。

摘  要:随着油气勘探开发智能化应用越来越成熟、应用场景越来越丰富,大规模应用日益临近,样本的分布式存储、高效采集及并行计算已成为油气勘探开发智能化应用的迫切需求。地震勘探的智能化是油气勘探开发智能化的重要组成部分。针对地震勘探数据具有的单一文件数据量大、非结构化的特点,在分析地震勘探大数据样本采集需求的基础上,提出基于Hadoop分布式文件系统(HDFS)的大文件分割和合并的解决方案,并对地震勘探数据生成3个不同维度的冗余存储,以提升地震勘探样本的采集效率。测试结果表明,基于HDFS的三倍冗余存储方案在数据量迅速增大的情况下,可以有效地提高地震勘探大数据样本的采集效率,从而满足地震勘探智能化应用需求。As the intelligent application of oil and gas exploration and development matures and application scenarios increase,large-scale application is drawing nearer.As a result,the distributed storage,efficient collection,and parallel computing of samples have become urgent requirements of the intelligent application of oil and gas exploration and development.The intelligent application of seismic exploration is an important part of that of oil and gas exploration and development.In view of the large amount of single file data in and the unstructured characteristic of seismic exploration data,this paper analyzes the collection requirements for seismic exploration big data samples,proposes a solution of large file segmentation and merging based on the Hadoop distributed file system(HDFS),and implements redundant storage of seismic exploration data in three dimensions to improve the efficiency of seismic exploration sample collection.The experimental results show that the HDFS-based triple redundant storage solution can effectively improve the efficiency in collecting seismic exploration big data samples under rapid growth in data amount and therefore meet the requirements for intelligent application of seismic exploration.

关 键 词:HDFS 地震勘探 大数据 样本采集 存储优化 

分 类 号:TE319[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象