检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马朝永[1,2] 申宏晨 胥永刚 张坤[1,2] MA Chaoyong;SHEN Hongchen;XU Yonggang;ZHANG Kun(Beijing University of Technology,Beijing 100124,China;Beijing Engineering Research Center of Precision Measurement Technology and Instruments,Beijing 100124,China)
机构地区:[1]北京工业大学,北京100124 [2]北京市精密测控技术与仪器工程技术研究中心,北京100124
出 处:《轴承》2022年第2期55-60,共6页Bearing
基 金:国家自然科学基金资助项目(51775005)。
摘 要:奇异谱分解在处理强噪声信号时获得的模态分量可能包含期待频段之外的信息,会造成严重的模态混叠现象并影响分析效果,深入研究发现造成上述现象的原因是迭代过程中轨迹矩阵的嵌入维数设定不合理。在大量数据分析的基础上提出了一种优化的奇异谱分解方法(OSSD),以迭代过程中划分的频段及重构分量时特征向量的选择为依据确定新的参数并设定嵌入维数,不仅可以使构造的轨迹矩阵更加合理,还可以使分量的重构更加准确。仿真及试验分析表明,该方法可以有效抑制模态混叠现象,减少分解所得分量在频域上的能量泄漏,准确提取滚动轴承振动信号中的故障特征。The modal components obtained by Singular Spectrum Decomposition(SSD)may contain information beyond expected frequency band when processing strong noise signals,which will cause the serious mode aliasing phenomenon and affect the analysis effect.In-depth study finds that the above phenomenon is caused by unreasonable setting of embedding dimension of trajectory matrix during iteration process.Based on a large number of data analysis,the Optimized SSD(OSSD)method is proposed.The proposed method determines the new parameters and sets the embedding dimension based on frequency band divided in iteration process and selection of eigenvectors during reconstruction of components,which can not only make the constructed trajectory matrix more reasonable,but also make the reconstruction of components more accurate.The simulation and experimental analysis show that the method can effectively suppress the mode aliasing phenomenon,reduce the energy leakage of decomposed components in frequency domain,and accurately extract fault features from rolling bearing vibration signals.
关 键 词:滚动轴承 故障诊断 谱分析 奇异谱分解 嵌入维数 模态混叠
分 类 号:TH133.33[机械工程—机械制造及自动化] TH165.3
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117