基于改进飞蛾扑火算法的单时刻参数可变机组组合优化  被引量:1

Optimization of unit commitment with variable parameters in a single hour based on an improved MFO

在线阅读下载全文

作  者:赖伟鹏 陈璟华[1] 胡文波 LAI Weipeng;CHEN Jinghua;HU Wenbo(School of Automation,Guangdong University of Technology,Guangzhou Guangdong 510006,China)

机构地区:[1]广东工业大学自动化学院,广东广州510006

出  处:《宁夏电力》2021年第6期1-8,共8页Ningxia Electric Power

基  金:国家自然科学基金青年基金资助项目(51707057)。

摘  要:机组组合属于高维、离散、非凸的混合整数非线性规划问题,具有NP-hard特点。提出结合二进制粒子群算法与混沌飞蛾扑火算法的单时刻参数可变机组组合优化方法,将总时刻机组组合问题依次、逐一分解为单时刻启停状态主问题与单时刻经济分配子问题,对主、子问题分别运用二进制粒子群算法与改进飞蛾扑火算法进行交替迭代求解以提升求解速率。运用参数可变策略与优先次序法概率调整策略对算法参数及候选解进行修正,以提升算法运行效率及候选解质量。测试结果表明,本文所提方法具有良好的运算速率及收敛精度,能有效求解大规模机组组合问题。As a NP-hard mathematical program,unit commitment(UC)is a high-dimensional,discrete,non-convex and mixed-integer nonlinear programming.This paper proposes an optimization method for unit commitment with variable parameters in a single hour combined with binary particle swarm optimization(BPSO)and a chaotic moth flame optimization(MFO)algorithm.The method successively resolves the UC problem into the main problem of startup and shutdown status in a single hour and a subproblem of economic allocation in a single hour one by one.Moreover,it uses BPSO and a chaotic MFO algorithm as the alternating iterative method to accelerate the solution.Finally,the paper adopts the parameter variability strategy and probability adjustment strategy based on the priority sequence method to correct algorithm parameters and candidate solutions to improve the operation efficiency of the algorithm and quality of the candidate solution.The test results show that the proposed method,featuring high operation rate and convergence precision,can solve large-scale unit commitment.

关 键 词:参数可变 单时刻 改进飞蛾扑火算法 

分 类 号:TM74[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象