机构地区:[1]Integrated Circuits and Smart System Lab(Shenzhen),Renewable Energy Conversion and Storage Center,Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology,College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300071,China [2]Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response,Civil Aviation University of China,Tianjin 300300,China [3]CAS Key Laboratory of Materials for Energy Conversion and State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China [4]State Key Laboratory of Silicon Materials,School of Materials Science and Engineering,Zhejiang University,Hangzhou 310027,China
出 处:《Science China Materials》2022年第2期391-399,共9页中国科学(材料科学(英文版)
基 金:financially supported by the National Key Research and Development Program(2016YFB0901600);Tianjin City Distinguished Young Scholar Fund(17JCJQJC45100);the National Natural Science Foundation of China(21975136 and 21573117);Tianjin Key Research and Development Program(18ZXSZSF00060);the Open Funds from the National Engineering Lab for Mobile Source Emission Control Technology(NELMS2018A01);the project of Shenzhen Science,Technology and Innovation Committee(JCYJ20190808151603654)。
摘 要:The development of a high-performing pseudocapacitor requires a comprehensive understanding of electrode materials from the aspects of electron transfer and electrolyte ion adsorption and diffusion.Herein,these factors are considered over the prototype TiO_(2),and a high pseudocapacitance is achieved via the introduction of various defects,i.e.,oxygen defect(V_(O))and co-doped defect(V_(O)+N_(O)).The study is based on joint explorations of first-principle calculations and the transfer matrix method.Relative to pristine TiO_(2)(300 F g^(-1)),defective TiO_(2) produces pseudocapacitance as high as 1700 F g^(-1).Moreover,defects induce small barriers for electron transmission caused by surface band bending.The climbing image nudged elastic band diffusion of H ions displays a much higher barrier in TiO_(2)-V_(O) than in TiO_(2)-V_(O)+N_(O).Such a result indicates easy H diffusion in the co-doped system.This work provides insights into the adsorption and diffusion of electrolyte ions and the influence of defects on electron transfer.The results are also significant for the design and optimization of electrode materials for the next generation of supercapacitors.高性能赝电容的发展需要从电子转移、电解质离子吸附和扩散方面全面理解电极材料.本论文结合第一性原理与转移矩阵法,以TiO_(2)为原型,通过引入各种缺陷,即氧缺陷(V_(O))和共掺杂缺陷(V_(O)+N_(O)),在综合考虑以上因素后获得了较高的赝电容.与本征TiO_(2)(300 F g^(-1))相比,有缺陷的TiO_(2)产生的赝电容高达1700 F g^(-1).此外,缺陷会使得表面能带弯曲减小电子传输势垒,H离子在TiO_(2)-V_(O)中显示出比在TiO_(2)-V_(O)+N_(O)中高得多的势垒,表明在共掺杂体系中H扩散更容易.这项工作为电解质离子的吸附和扩散以及缺陷对电子传输的影响提供了见解,对于下一代超级电容器电极材料的设计和优化具有重要意义.
关 键 词:PSEUDOCAPACITANCE charge storage ion diffusion electron transmission
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...