检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾洲一 胡丽娟[1] Gu Zhouyi;Hu Lijuan(Zhejiang Financial College,Hangzhou 310018,Zhejiang,China)
出 处:《金融发展研究》2022年第1期79-84,共6页Journal Of Financial Development Research
基 金:教育部人文社会科学规划基金项目“基于大数据的城市信用监测与评价体系研究”(18YJC790117)。
摘 要:有效把控信贷风险是商业银行稳健运行的关键环节。本文从商业银行客户信贷数据出发,运用非平衡样本处理算法使少数类样本信息得到平衡,并通过机器学习分类器挖掘影响客户违约的重要风险因子,最后构建Logistic模型计算违约概率。研究发现:第一,客户忠诚度是重要因子,忠诚度越高,客户违约概率越低;第二,客户历史信贷数据价值高,是事前风险控制中的重要参考依据;第三,信贷合同特征是影响客户违约的另一重要维度,包括合同期限和合同利率。研究结论可以为银行授信、风险预警和防范违约风险提供理论参考和实践指导。Effectively controlling credit risk is the key link for the steady operation of commercial banks.Based on the customers'credit data of commercial banks,this paper uses an unbalanced sample processing algorithm to balance the information of minority samples,and mines the key risk factors affecting customer default by a machine-learning classifier.Finally,a Logistic Model is constructed to calculate the default probability.It is found that:firstly,customer loyalty is an important fundamental factor;the higher the loyalty,the lower the chance of customer default;secondly,high value of historical customer credit data,which is an important reference basis in ex ante risk control;thirdly,credit contract characteristics are another important dimension affecting customer default,including contract duration and contract interest rate.The findings of the study can provide theoretical references and practical guidance for bank credit granting,risk warning and default risk prevention.
关 键 词:信贷风险 非平衡处理 机器学习 LOGISTIC模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38