检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方芹 牛司平 陈予东 于江华[2] FANG Qin;NIU Si-ping;CHEN Yu-dong;YU Jiang-hua(Department of Environmental Science and Engineering,School of Energy and Environment,Anhui University of Technology,Ma'anshan 243002,China;Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control(AEMPC),School of Environmental Science and Engineering,Nanjing University of Information Science&Technology,Nanjing 210044,China)
机构地区:[1]安徽工业大学能源与环境学院环境科学与工程系,马鞍山243002 [2]南京信息工程大学环境科学与工程学院,江苏省大气环境检测与污染控制高技术研究重点实验室,大气环境与装备技术协同创新中心,南京210044
出 处:《环境科学》2022年第1期189-198,共10页Environmental Science
基 金:国家自然科学基金项目(41701553);安徽省自然科学基金项目(1808085QD109);安徽省归国留学人员创新创业扶持计划项目;江苏省大气环境监测与污染控制高技术研究重点实验室开放基金项目;江苏高校优势学科建设工程项目。
摘 要:微塑料作为一种新兴污染物,由于其对生态系统具有潜在的负面影响,受到了广泛的关注.但是目前关于其在陆地环境中,尤其是路面积尘中的相关信息相对有限.本文对马鞍山市雨山区路面积尘的微塑料污染特征进行了研究.研究区域内单位面积路面所积累的微塑料丰度为(18.11±32.36)n·m^(-2),含量为(27.29±72.64)mg·m^(-2);而单位质量积尘中微塑料丰度为(223.00±197.01)n·kg^(-1),含量为(385.23±628.93)mg·kg^(-1).聚合物鉴定结果表明,路面积尘中的微塑料主要为聚丙烯(58.90%)和聚乙烯(30.08%).对比发现商业区单位面积路面的微塑料丰度最高[(78.32±101.24)n·m^(-2)],其次是居住区[(19.81±14.30)n·m^(-2)]、工业区[(10.95±5.54)n·m^(-2)]、郊区[(8.56±8.13)n·m^(-2)]和文教区[(6.99±5.74)n·m^(-2)].意味着在面积相同的情况下,商业区路面积尘的微塑料污染更为严重.从形状来看,路面积尘中的微塑料为薄膜、颗粒、纤维和球型,相应的数量占比分别为66.64%、16.14%、14.13%和3.10%,且绝大多数尺寸在1 000μm以下.本研究还发现单位面积路面的微塑料丰度与积尘负荷显著性正相关(r=0.599,P<0.01)而质量则与积尘负荷没有明显的相关性(r=0.067,P=0.780).主要是因为积尘和塑料主要来源存在一定的差异.通常在没有清扫的时候,路面积尘可以持续积累,但对微塑料而言只有存在外来输入的情况下才会有质量的增加.另一方面,路面上的微塑料会在车辆等的外力作用下破碎导致其数量增加.Microplastics(MPs), as an emerging contaminant, have attracted wide attention due to their potentially negative impact on the ecosystem. However, information on microplastic pollution in terrestrial environments, especially road dust, is still rare. In this study, the microplastic pollution in road dust from the Yushan District of Ma’anshan City was characterized. The abundances of MPs accumulated per square meter of road and dust were(18.11±32.36) n·m^(-2)and(223.00±197.01) n·kg^(-1), respectively, and the contents were(27.29±72.64) mg·m^(-2)and(385.23±628.93) mg·kg^(-1), respectively, with polypropylene(PP, 58.90%) and polyethylene(PE, 30.08%) as the major polymers based on the number fraction in dust. Additionally, in a given road area, the abundance of MPs in commercial areas was the highest [(78.32±101.24) n·m^(-2)], followed by residential [(19.81±14.30) n·m^(-2)], industrial [(10.95±5.54) n·m^(-2)], suburban [(8.56±8.13) n·m^(-2)], and educational [(6.99±5.74) n·m^(-2)] areas. In the case of the same area, the microplastic pollution from the commercial area was heavier. Regarding the shape of the MPs detected in road dust, 66.64% were present as films, 16.14% as granules, 14.13% as fibers, and 3.10% as spheres out of the total number detected. Most of the MPs were less than 1 000 μm in size. For a particular road area, the abundance of MPs was significantly correlated with the mass of dust(r=0.599, P<0.01), whereas there was no obvious correlation for the mass of MPs(r=0.067, P=0.780). Generally, the road dust can accumulate continuously prior to cleaning, whereas the mass of the MPs will not increase unless there is external input. Otherwise, MPs on the road will be broken down under the action of external forces such as vehicles, resulting in an increase in the number of MPs.
分 类 号:X513[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3