检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴承鑫 沈海军 王治华 黄婷 范帅 何光宇[1] WU Chengxin;SHEN Haijun;WANG Zhihua;HUANG Ting;FAN Shuai;HE Guangyu(School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Energy Security Department,Logistics Support Center,Shanghai Jiao Tong University,Shanghai 200240,China;Electric Power Dispatching and Communication Center of State Grid Shanghai Municipal Electric Power Company,Shanghai 200122,China;Zhangjiang Science City Energy Service Center of State Grid Shanghai Pudong Power Supply Company,Shanghai 201210,China)
机构地区:[1]上海交通大学电子信息与电气工程学院,上海市200240 [2]上海交通大学后勤保障中心能源保障部,上海市200240 [3]国网上海市电力公司电力调度控制中心,上海市200122 [4]国网上海浦东供电公司张江科学城能源服务中心,上海市201210
出 处:《电力系统自动化》2022年第1期120-129,共10页Automation of Electric Power Systems
基 金:国网上海市电力公司科技项目(5209001900PJ)资助。
摘 要:准确辨识空调负荷模型的参数是挖掘其节能及需求响应潜力的重要基础,当前研究大多采用精度较差的离线辨识方法。为此,基于数据驱动思想,提出一种变频空调模型参数在线辨识方法。首先,建立了数据驱动的空调负荷模型参数在线辨识架构。然后,基于空调负荷模型提出数据驱动的在线辨识机制和方法。其中,数据驱动的在线辨识机制设计为基于参数显著变化事件驱动的参数更新判别机制和基于历史参数波动范围的参数动态阈值设定机制,在该机制下通过粒子群优化算法建立了快速在线辨识方法。最后,通过实测环境,验证了所提在线辨识方法的有效性,与离线辨识方法相比,所提方法极大地提高了计算速度及准确度,可满足在线应用需要。Accurately identifying the parameters of the air-conditioning load model is an important basis for tapping its energy saving and demand response potential. Current studies mostly adopt offline identification methods with low accuracy. Therefore, a data-driven online identification method of model parameters for air-conditioning is proposed. Firstly, the framework of data-driven online identification for parameters of the air-conditioning load model is established. Secondly, based on the air-conditioning load model, the data-driven online identification mechanism and method are proposed. Among them, the data-driven online identification mechanism is designed as the parameter update discrimination mechanism based on event-driven significant changes in parameters, and the dynamic threshold setting mechanism for parameters based on fluctuation ranges of historical parameters.Under this mechanism, a fast online identification method is established through the particle swarm optimization algorithm.Finally, the effectiveness of the proposed online identification method is verified in a practical experimental environment.Compared with offline identification methods, the proposed method improves the calculation speed and accuracy more greatly, and can meet the needs of online applications.
关 键 词:变频空调 在线辨识 数据驱动机制 二阶等效热参数模型
分 类 号:TU831.2[建筑科学—供热、供燃气、通风及空调工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.9