检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:饶永红 刘忠波 梁书秀[3] 李欣 RAO Yong-hong;LIU Zhong-bo;LIANG Shu-xiu;LI Xin(Unit 91053 of the Chinese People′s Liberation Army, Qingdao 266100, China;Dalian Maritime University, College of Transportation Engineering,Dalian 116026, China;State Key Laboratory of Coastal and offshore Engineering, Dalian University of Technology, Dalian 116023, China)
机构地区:[1]中国人民解放军91053部队,青岛266100 [2]大连海事大学交通运输工程学院,大连116026 [3]大连理工大学海岸和近海工程国家重点实验室,大连116023
出 处:《水道港口》2021年第5期614-622,共9页Journal of Waterway and Harbor
基 金:国家重点研发计划资助项目(2019YFC1407700);国家自然科学基金(51779022)。
摘 要:高精度模拟波浪在潜堤上的传播演变过程,要求数学模型具有优良的色散性、变浅性和非线性。为了考察双层Boussinesq方程模型模拟强非线性问题的精度,针对1:4潜堤上非线性较强的非破碎波传播变形开展了数值模拟研究,并设计了物理模型试验,确定了强非线性工况。数值模型求解利用预报-校正的有限差分法,时间差分格式采用混合4阶Adams-Bashforth-Moulton格式。将计算得到的波面位移、波浪水平速度、垂向速度与对应的试验数据比较,两者的吻合程度较高,展示出双层Boussinesq方程模型具有优良的线性与非线性性能。根据模拟结果分析了潜堤浅水中的波高与水深比,范围在0.539~0.599,属于非破碎、强非线性波浪,这表明双层Boussinesq方程模型可以胜任不破碎强非线性波的模拟。Accurate simulation of wave propagation and evolution on submerged breakwater requires a high accuracy in dispersion,shoaling and nonlinear property of the numerical model.In order to investigate the accuracy of the two-layer Boussinesq model in the simulation of strongly nonlinear problems,the numerical simulations of the propagation and transformation of non-breaking waves on 1:4 submerged breakwater were carried out.And the physical model test was designed for strongly nonlinear condition.The numerical model was solved by the finite difference method with predicted-corrected scheme via a composite fourth-order Adams-Bashforth-Moulton time integration.The calculated wave surface displacement,horizontal velocity and vertical velocity were compared with the corresponding experimental data,the calculated results were in good agreement with the experimental results,which shows that the two-layer Boussinesq water wave equation has excellent linear and nonlinear performance.The ratio of wave height to water depth in shallow water is analyzed by numerical simulation,which belongs to strong nonlinear wave in the range of 0.539-0.599.It shows that the two-layer Boussinesq type water wave equation can be used to simulate strong nonlinear waves without breaking.
关 键 词:双层Boussinesq方程 数值模拟 试验模拟 波面位移 水平速度 垂向速度
分 类 号:U65[交通运输工程—港口、海岸及近海工程] TV139.25[交通运输工程—船舶与海洋工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.54.244