In-service aircraft engines turbine blades life prediction based on multi-modal operation and maintenance data  被引量:4

在线阅读下载全文

作  者:He Liu Jianzhong Sun Shiying Lei Shungang Ning 

机构地区:[1]College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China

出  处:《Propulsion and Power Research》2021年第4期360-373,共14页推进与动力(英文)

基  金:supported in part by National Natural Science Foundation of China(91860139).

摘  要:The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines.It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engine operation and reasonable maintenance decision-making.In this paper,a machine learning-based mechanism with multiple information fusion is proposed to predict the remaining useful life of high-pressure turbine blades.The developed method takes account of the in-service operating factors such as the high-pressure rotor speed and exhaust gas temperature,as well as the engine operating environments and performance degradation.The effectiveness of this method is demonstrated on simulated test cases generated by an integrated blade creep-life assessment model,which comprises engine performance,blade stress,thermal,and creep life estimation models.The results show that the proposed method provides a prospective result for in-service life evaluation of turbine blades and is of significance to evaluating the engine on-wing lifetime and making a reasonable maintenance plan.

关 键 词:Multi-modal operating data fusion High pressure turbine blade Remaining useful life prediction Operating condition Creep life 

分 类 号:TG1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象