检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡坤 陈迟晓 李伟 甘中学 HU Kun;CHEN Chi-xiao;LI Wei;GAN Zhong-xue(Academy for Engineering and Technology,Fudan University,Shanghai 200433,China)
机构地区:[1]复旦大学工程与应用技术研究院,上海200433
出 处:《小型微型计算机系统》2022年第1期50-55,共6页Journal of Chinese Computer Systems
基 金:上海市科委项目(19511132000)资助。
摘 要:目前大量被提出的关于单目视觉深度估计网络研究中其网络结构庞大臃肿,在实际部署中会存在占用大、延迟高的问题.针对以上问题,本文提出了基于可学习步长的量化策略的轻量化深度估计网络.该网络采取特征金字塔(FPN)的网络结构对图片不同尺度的特征信息进行提取.并结合内存优化,对网络的特征提取部分采用深度可分离卷积,使得网络相对于ResNet参数总量下降1/3.同时文中对特征解码器进行设计,网络计算中跳跃连接传递的参数量对比ResNet下降了68.61%.本文的轻量化深度估计网络参数位宽由32比特降至3比特.实验结果表明,轻量化后的深度估计网络的网络参数大小下降90.59%,在KITTI数据集上绝对相对误差为16.0%,最终轻量化的网络大小从34.12MB下降到了3.21MB.A large number of proposed monocular depth estimation network research has a huge and bloated network structure, which will have the problems of large occupation and high delay in the actual deployment.In order to solve the problems, a lightweight depth estimation network based on learned step quantization strategy is proposed in this paper.The network adopts the structure of feature pyramid network(FPN)to extract the feature information of different scales.Combined with memory optimization, depthwise separable convolution is used in the feature extraction part of the network, so that the total amount of network parameters relative to ResNet is reduced by 1/3.At the same time, the skip connection transfer parameters in network computing is reduced by 68.61% compared with ResNet due the fine designed decoder.In this paper, the lightweight depth estimation network parameter bit width is reduced from 32 bits to 3 bits.The experimental results show that the network parameter size of the lightweight depth estimation network is reduced by 90.59%,and the absolute relative error on the KITTI data set is 16.0%.Finally, the lightweight network size is reduced from 34.12 MB to 3.21 MB.
关 键 词:网络轻量化 可学习步长量化 深度估计 深度可分离卷积
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.4.109