XGBoost-RF的物联网入侵检测模型  被引量:16

Intrusion Detection Model of Internet of Things Based on XGBoost-RF

在线阅读下载全文

作  者:乔楠 李振兴[2] 赵国生[1] QIAO Nan;LI Zhen-xing;ZHAO Guo-sheng(School of Computer Science and Information Engineering,Harbin Normal University,Harbin 150025,China;School of Center of Network Security,Harbin Normal University,Harbin 150025,China)

机构地区:[1]哈尔滨师范大学计算机科学与信息工程学院,哈尔滨150025 [2]哈尔滨师范大学网络中心,哈尔滨150025

出  处:《小型微型计算机系统》2022年第1期152-158,共7页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61202458,61403109)资助;黑龙江省科学基金项目(LH2020F034)资助。

摘  要:针对物联网入侵检测中检测数据不平衡导致的分类不准确的问题,提出了一种基于极端梯度提升树和随机森林相结合的物联网入侵检测模型.首先,针对物联网应用环境中产生的大量数据,对数据进行数据归一化处理.然后,利用XGBoost算法对其中的特征进行重要性评分,选择最优特征.最后,结合改进的随机森林算法,解决因数据不平衡导致的分类不准确的问题.仿真试验表明所提模型能有效的进行数据最优特征选择及合理地检测分类,同RF算法、SVM算法、Tree-SVM模型和RF-GDBT模型相比,所提模型的检测准确率有效改善.In view of the problem of inaccurate classification caused by unbalanced detection data in the internet of things intrusion detection, an internet of things intrusion detection model based on the combination of extreme gradient boosting and the random forest is proposed.Firstly, due to the large amount of data generated in the application environment of the Internet of things, data normalization processing is carried out on the data.Then, the XGBoost algorithm is used to score the importance of the features and select the best features.Finally, combined with the improved random forest algorithm, the problem of inaccurate classification caused by data imbalance is solved.The simulation test shows that the optimal features of data can be effectively selected and reasonably classified by the proposed model.Compared with the RF algorithm, SVM algorithm, tree-SVM model and RF-GDBT model, the detection accuracy of the proposed model is effectively improved.

关 键 词:物联网 入侵检测 XGBoost 随机森林 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象