Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions  

在线阅读下载全文

作  者:Cui-Xian Guo Shu Chen 郭翠仙;陈澍(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Yangtze River Delta Physics Research Center,Liyang 213300,China)

机构地区:[1]Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China [2]School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China [3]Yangtze River Delta Physics Research Center,Liyang 213300,China

出  处:《Chinese Physics B》2022年第1期81-86,共6页中国物理B(英文版)

基  金:the National Key Research and Development Program of China(Grant No.2016YFA0300600);the National Natural Science Foundation of China(Grant No.11974413);the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000).

摘  要:We study the one-dimensional general non-Hermitian models with asymmetric long-range hopping and explore how to analytically solve the systems under some specific boundary conditions.Although the introduction of long-range hopping terms prevents us from finding analytical solutions for arbitrary boundary parameters,we identify the existence of exact solutions when the boundary parameters fulfill some constraint relations,which give the specific boundary conditions.Our analytical results show that the wave functions take simple forms and are independent of hopping range,while the eigenvalue spectra display rich model-dependent structures.Particularly,we find the existence of a special point coined as pseudo-periodic boundary condition,for which the eigenvalues are the same as those of the periodical system when the hopping parameters fulfill certain conditions,whereas the eigenstates display the non-Hermitian skin effect.

关 键 词:non-Hermitian physics exact solution topological physics long-range hopping 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象