Determination of quantum toric error correction code threshold using convolutional neural network decoders  被引量:1

在线阅读下载全文

作  者:Hao-Wen Wang Yun-Jia Xue Yu-Lin Ma Nan Hua Hong-Yang Ma 王浩文;薛韵佳;马玉林;华南;马鸿洋(School of Sciences,Qingdao University of Technology,Qingdao 266033,China;School of Information and Control Engineering,Qingdao University of Technology,Qingdao 266033,China)

机构地区:[1]School of Sciences,Qingdao University of Technology,Qingdao 266033,China [2]School of Information and Control Engineering,Qingdao University of Technology,Qingdao 266033,China

出  处:《Chinese Physics B》2022年第1期136-142,共7页中国物理B(英文版)

基  金:the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295);the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01);the Project of Shandong Province Higher Educational Science and Technology Program,China(Grant No.J18KZ012).

摘  要:Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.

关 键 词:quantum error correction toric code convolutional neural network(CNN)decoder 

分 类 号:TN911.22[电子电信—通信与信息系统] TP183[电子电信—信息与通信工程] O413[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象