检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jintao Yang Junpeng Cao Wen-Li Yang 杨锦涛;曹俊鹏;杨文力(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Songshan Lake Materials Laboratory,Dongguan 523808,China;Peng Huanwu Center for Fundamental Theory,Xi'an 710127,China;Institute of Modern Physics,Northwest University,Xi'an 710127,China;School of Physical Sciences,Northwest University,Xi'an 710127,China;Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi'an 710127,China)
机构地区:[1]Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China [2]School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China [3]Songshan Lake Materials Laboratory,Dongguan 523808,China [4]Peng Huanwu Center for Fundamental Theory,Xi'an 710127,China [5]Institute of Modern Physics,Northwest University,Xi'an 710127,China [6]School of Physical Sciences,Northwest University,Xi'an 710127,China [7]Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi'an 710127,China
出 处:《Chinese Physics B》2022年第1期165-169,共5页中国物理B(英文版)
基 金:the National Program for Basic Research of the Ministry of Science and Technology of China(Grant Nos.2016YFA0300600 and 2016YFA0302104);the National Natural Science Foundation of China(Grant Nos.12074410,12047502,11934015,11975183,11947301,11774397,11775178,and 11775177);the Major Basic Research Program of the Natural Science of Shaanxi Province,China(Grant No.2017ZDJC-32);the Australian Research Council(Grant No.DP 190101529);the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000);the Double First-Class University Construction Project of Northwest University.
摘 要:We study the non-Markovian dynamics of an open quantum system with machine learning.The observable physical quantities and their evolutions are generated by using the neural network.After the pre-training is completed,we fix the weights in the subsequent processes thus do not need the further gradient feedback.We find that the dynamical properties of physical quantities obtained by the dynamical learning are better than those obtained by the learning of Hamiltonian and time evolution operator.The dynamical learning can be applied to other quantum many-body systems,non-equilibrium statistics and random processes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198