Dynamical learning of non-Markovian quantum dynamics  

在线阅读下载全文

作  者:Jintao Yang Junpeng Cao Wen-Li Yang 杨锦涛;曹俊鹏;杨文力(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Songshan Lake Materials Laboratory,Dongguan 523808,China;Peng Huanwu Center for Fundamental Theory,Xi'an 710127,China;Institute of Modern Physics,Northwest University,Xi'an 710127,China;School of Physical Sciences,Northwest University,Xi'an 710127,China;Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi'an 710127,China)

机构地区:[1]Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China [2]School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China [3]Songshan Lake Materials Laboratory,Dongguan 523808,China [4]Peng Huanwu Center for Fundamental Theory,Xi'an 710127,China [5]Institute of Modern Physics,Northwest University,Xi'an 710127,China [6]School of Physical Sciences,Northwest University,Xi'an 710127,China [7]Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi'an 710127,China

出  处:《Chinese Physics B》2022年第1期165-169,共5页中国物理B(英文版)

基  金:the National Program for Basic Research of the Ministry of Science and Technology of China(Grant Nos.2016YFA0300600 and 2016YFA0302104);the National Natural Science Foundation of China(Grant Nos.12074410,12047502,11934015,11975183,11947301,11774397,11775178,and 11775177);the Major Basic Research Program of the Natural Science of Shaanxi Province,China(Grant No.2017ZDJC-32);the Australian Research Council(Grant No.DP 190101529);the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000);the Double First-Class University Construction Project of Northwest University.

摘  要:We study the non-Markovian dynamics of an open quantum system with machine learning.The observable physical quantities and their evolutions are generated by using the neural network.After the pre-training is completed,we fix the weights in the subsequent processes thus do not need the further gradient feedback.We find that the dynamical properties of physical quantities obtained by the dynamical learning are better than those obtained by the learning of Hamiltonian and time evolution operator.The dynamical learning can be applied to other quantum many-body systems,non-equilibrium statistics and random processes.

关 键 词:machine learning quantum dynamics open quantum system 

分 类 号:O413[理学—理论物理] TP181[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象