LONG-TIME OSCILLATORY ENERGY CONSERVATION OF TOTAL ENERGY-PRESERVING METHODS FOR HIGHLY OSCILLATORY HAMILTONIAN SYSTEMS  被引量:1

在线阅读下载全文

作  者:Bin Wang Xinyuan Wu 

机构地区:[1]School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an 710049,China [2]Department of Mathematics,Nanjing University,Nanjing 210093,China [3]School of Mathematical Sciences,Qufu Normal University,Qufu 273165,China

出  处:《Journal of Computational Mathematics》2022年第1期70-88,共19页计算数学(英文)

基  金:supported by the Alexander von Humboldt Foundation。

摘  要:For an integrator when applied to a highly oscillatory system,the near conservation of the oscillatory energy over long times is an important aspect.In this paper,we study the long-time near conservation of oscillatory energy for the adapted average vector field(AAVF)method when applied to highly oscillatory Hamiltonian systems.This AAVF method is an extension of the average vector field method and preserves the total energy of highly oscillatory Hamiltonian systems exactly.This paper is devoted to analysing another important property of AAVF method,i.e.,the near conservation of its oscillatory energy in a long term.The long-time oscillatory energy conservation is obtained via constructing a modulated Fourier expansion of the AAVF method and deriving an almost invariant of the expansion.A similar result of the method in the multi-frequency case is also presented in this paper.

关 键 词:Highly oscillatory Hamiltonian systems Modulated Fourier expansion AAVF method Energy-preserving methods Long-time oscillatory Energy conservation 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象