UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF THE BILINEAR-CONSTANT SCHEME FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS  

在线阅读下载全文

作  者:Huaijun Yang Dongyang Shi 

机构地区:[1]School of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450046,China [2]School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China

出  处:《Journal of Computational Mathematics》2022年第1期127-146,共20页计算数学(英文)

基  金:supported by National Natural Science Foundation of China(No.11671369);the Doctoral Starting Foundation of Zhengzhou University of Aeronautics(No.63020390).

摘  要:In this paper,the unconditional error estimates are presented for the time-dependent Navier-Stokes equations by the bilinear-constant scheme.The corresponding optimal error estimates for the velocity and the pressure are derived unconditionally,while the previous works require certain time-step restrictions.The analysis is based on an iterated time-discrete system,with which the error function is split into a temporal error and a spatial error.The τ-independent(τ is the time stepsize)error estimate between the numerical solution and the solution of the time-discrete system is proven by a rigorous analysis,which implies that the numerical solution in L^(∞)-norm is bounded.Thus optimal error estimates can be obtained in a traditional way.Numerical results are provided to confirm the theoretical analysis.

关 键 词:Navier-Stokes equations Unconditionally optimal error estimates Bilinear-constant scheme Time-discrete system. 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象