检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450046,China [2]School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China
出 处:《Journal of Computational Mathematics》2022年第1期127-146,共20页计算数学(英文)
基 金:supported by National Natural Science Foundation of China(No.11671369);the Doctoral Starting Foundation of Zhengzhou University of Aeronautics(No.63020390).
摘 要:In this paper,the unconditional error estimates are presented for the time-dependent Navier-Stokes equations by the bilinear-constant scheme.The corresponding optimal error estimates for the velocity and the pressure are derived unconditionally,while the previous works require certain time-step restrictions.The analysis is based on an iterated time-discrete system,with which the error function is split into a temporal error and a spatial error.The τ-independent(τ is the time stepsize)error estimate between the numerical solution and the solution of the time-discrete system is proven by a rigorous analysis,which implies that the numerical solution in L^(∞)-norm is bounded.Thus optimal error estimates can be obtained in a traditional way.Numerical results are provided to confirm the theoretical analysis.
关 键 词:Navier-Stokes equations Unconditionally optimal error estimates Bilinear-constant scheme Time-discrete system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7