边缘环境下基于模糊理论的科学工作流调度研究  被引量:1

Study on Scientific Workflow Scheduling Based on Fuzzy Theory Under Edge Environment

在线阅读下载全文

作  者:林潮伟 林兵 陈星[1,2] LIN Chao-wei;LIN Bing;CHEN Xing(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China;Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing,Fuzhou 350108,China;College of Physics and Energy,Fujian Normal University,Fuzhou 350117,China)

机构地区:[1]福州大学数学与计算机科学学院,福州350108 [2]福建省网络计算与智能信息处理重点实验室,福州350108 [3]福建师范大学物理与能源学院,福州350117

出  处:《计算机科学》2022年第2期312-320,共9页Computer Science

基  金:国家重点研发计划(2018YFB1004800);福建省自然科学基金杰青项目(2020J06014)。

摘  要:作为一种新型计算范式,边缘计算已成为解决大规模科学应用程序的重要途径。针对边缘环境下的科学工作流调度问题,考虑到任务计算过程中的服务器执行性能波动和数据传输过程中的带宽波动造成的不确定性,文中基于模糊理论,使用三角模糊数表示任务计算时间和数据传输时间,同时提出一种基于遗传算法算子的自适应离散模糊粒子群优化算法(Adaptive Discrete Fuzzy GA-based Particle Swarm Optimization,ADFGA-PSO),目的是在满足工作流截止日期约束的前提下,降低其模糊执行代价。该方法引入遗传算法的两点交叉算子以及关于任务优先级的邻域变异算子和关于服务器编号的自适应多点变异算子,避免粒子陷入局部最优,有效提高算法的搜索性能。实验结果表明,与其他调度策略相比,基于ADFGA-PSO的调度策略能够更加有效地降低边缘环境下带截止日期约束的科学工作流的模糊执行代价。As a novel computing paradigm,edge computing has become a significant approach to solve large-scale scientific applications.Aiming at scientific workflow scheduling under edge environment,task computation time and data transmission time are uncertain due to the fluctuation of server processing performance and bandwidth,respectively.In order to help capture and reflect the uncertainty during workflow execution,task computation time and data transmission time are represented as triangular fuzzy numbers(TFN),based on fuzzy theory.Simultaneously,an adaptive discrete fuzzy GA-based particle swarm optimization(ADFGA-PSO) is proposed to minimize fuzzy execution cost of workflow while satisfying deadline constraint.Besides,two-point crossover operator,neighborhood mutation and adaptive multipoint mutation operator of genetic algorithm(GA) are introduced to avoid particles being trapped in local optimum.Experimental results show that,compared with others,scheduling strategy based on ADFGA-PSO can more effectively reduce fuzzy execution cost in regard to deadline-constrained scientific workflow scheduling under edge environment.

关 键 词:边缘计算 工作流调度 不确定性 三角模糊数 遗传算子 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象