检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王荣鹏[1] 宋桂秋[1] 周世华[1] WANG Rong-peng;SONG Gui-qiu;ZHOU Shi-hua(School of Mechanical Engineering&Automation,Northeastern University,Shenyang 110819,China)
机构地区:[1]东北大学机械工程与自动化学院,辽宁沈阳110819
出 处:《东北大学学报(自然科学版)》2022年第1期56-64,共9页Journal of Northeastern University(Natural Science)
基 金:国家科技支撑计划项目(2015BAF07B07)。
摘 要:通过研究钻柱系统的非线性动力学问题,建立了钻柱系统流固耦合动力学方程.利用Galerkin截断方法,将偏微分方程转化为常微分方程,采用Runge-Kutta积分法进行了数值模拟,研究了不同支撑刚度系数下,系统脉动频率、脉动幅值和质量比等参数激励对钻柱系统动力学特性的影响.结果表明,在不同的参数激励下模型表现出丰富的动力学行为,呈现不同的周期运动、拟周期运动、混沌运动和跳跃间断现象.系统由混沌运动通往周期运动的路径为倍周期倒分岔形式;支撑刚度在一定程度上引起系统固有特性的改变,对系统的非线性动力学行为有复杂的影响.The nonlinear dynamics of the drilling string system is studied, and the fluid-structure coupling dynamic equation of the drilling string system is established. With the Galerkin truncation method, a set of partial differential equations are diverted into ordinary differential equations. Numerical simulation is carried out by using the Runge-Kutta integration method and the effects of parameters such as pulsating frequency, pulsation amplitude and mass ratio on the dynamic characteristics of the drilling string system are investigated. The results show that there are various dynamic behaviors for the model in different parametric excitation such as periodic motion, quasi-periodic motion, chaotic motion and jump discontinuous phenomenon. Besides, the path from chaotic motion to periodic motion is in the form of period-doubling inverse bifurcation, and the support stiffness can cause a certain change in the inherent characteristics of the system, which has a complex impact on the nonlinear dynamic behavior of the system.
关 键 词:钻柱系统 非线性动力学 流固耦合 参数激励 GALERKIN方法
分 类 号:TH113[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229