检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科技风》2022年第5期66-68,共3页
摘 要:本文研究基于SRGAN改进的人脸超分辨率重构算法,在生成器网络的残差单元中加入了自注意力卷积模块,以提高网络训练中高频特征提取能力,在判别器网络中引入PatchGAN思想,强化判别器网络对高频特征细节的判别能力,关注更多的局部纹理细节,提高重构人脸图像质量。同时将WN层替换原有GAN中的BN层,在保证网络训练速度的前提下提高网络模型的稳定性并恢复出更高质量的人脸图像。
关 键 词:SRGAN 自注意力卷积模块 PatchGAN[3]
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15