Machine learning models and over-fitting considerations  被引量:7

在线阅读下载全文

作  者:Paris Charilaou Robert Battat 

机构地区:[1]Jill Roberts Center for Inflammatory Bowel Disease-Division of Gastroenterology&Hepatology,Weill Cornell Medicine,New York,NY 10021,United States

出  处:《World Journal of Gastroenterology》2022年第5期605-607,共3页世界胃肠病学杂志(英文版)

摘  要:Machine learning models may outperform traditional statistical regression algorithms for predicting clinical outcomes.Proper validation of building such models and tuning their underlying algorithms is necessary to avoid over-fitting and poor generalizability,which smaller datasets can be more prone to.In an effort to educate readers interested in artificial intelligence and model-building based on machine-learning algorithms,we outline important details on crossvalidation techniques that can enhance the performance and generalizability of such models.

关 键 词:Machine learning OVER-FITTING Cross-validation Hyper-parameter tuning 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象