IDEA:A Utility-Enhanced Approach to Incomplete Data Stream Anonymization  被引量:1

在线阅读下载全文

作  者:Lu Yang Xingshu Chen Yonggang Luo Xiao Lan Wei Wang 

机构地区:[1]the College of Computer Science,Sichuan University,Chengdu 610065,China [2]the School of Cyber Science and Engineering,Sichuan University,Chengdu 610065,China [3]the Cyber Science Research Institute,Sichuan University,Chengdu 610065,China

出  处:《Tsinghua Science and Technology》2022年第1期127-140,共14页清华大学学报(自然科学版(英文版)

基  金:supported by the National Natural Science Foundation of China (Nos. U19A2081 and 61802270);the Fundamental Research Funds for the Central Universities (No. 2020SCUNG129)。

摘  要:The prevalence of missing values in the data streams collected in real environments makes them impossible to ignore in the privacy preservation of data streams.However,the development of most privacy preservation methods does not consider missing values.A few researches allow them to participate in data anonymization but introduce extra considerable information loss.To balance the utility and privacy preservation of incomplete data streams,we present a utility-enhanced approach for Incomplete Data strEam Anonymization(IDEA).In this approach,a slide-window-based processing framework is introduced to anonymize data streams continuously,in which each tuple can be output with clustering or anonymized clusters.We consider the dimensions of attribute and tuple as the similarity measurement,which enables the clustering between incomplete records and complete records and generates the cluster with minimal information loss.To avoid the missing value pollution,we propose a generalization method that is based on maybe match for generalizing incomplete data.The experiments conducted on real datasets show that the proposed approach can efficiently anonymize incomplete data streams while effectively preserving utility.

关 键 词:ANONYMIZATION GENERALIZATION incomplete data streams privacy preservation UTILITY 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象