检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康健 王智睿 祝若鑫 孙显 KANG Jian;WANG Zhirui;ZHU Ruoxin;SUN Xian(School of Electronic and Information Engineering,Soochow University,Suzhou 215006,China;Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100190,China;State Key Laboratory of Geo-Information Engineering,Xi’an Research Institute of Surveying and Mapping,Xi’an 710054,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100190,China;Key Laboratory of Network Information System Technology(NIST),Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100190,China)
机构地区:[1]苏州大学电子信息学院,苏州215006 [2]中国科学院空天信息创新研究院,北京100190 [3]西安测绘研究所地理信息工程国家重点实验室,西安710054 [4]中国科学院大学电子电气与通信工程学院,北京100190 [5]中国科学院网络信息体系技术科技创新重点实验室,100190
出 处:《雷达学报(中英文)》2022年第1期157-167,共11页Journal of Radars
基 金:国家自然科学基金(62101371,62076241);江苏省青年基金项目(BK20210707)。
摘 要:近年来,高分辨合成孔径雷达(SAR)图像的智能解译技术在城市规划、变化监测等方面得到了广泛应用。不同于光学图像,SAR图像的获取方式、图像中目标的几何结构等因素制约了现有深度学习方法对SAR图像地物目标的解译效果。该文针对高分辨SAR图像城市区域建筑物提取,提出了基于监督对比学习的正则化方法,其主要思想是增强同一类别像素在特征空间中的相似性以及不同类别像素之间的差异性,使得深度学习模型能更加关注SAR图像中建筑物与非建筑物区域在特征空间中的区别,从而提升建筑物识别精度。利用公开的大场景SpaceNet6数据集,通过对比实验,提出的正则化方法,其建筑物提取精度相比于常用的分割方法在不同网络结构下至少提升1%,分割结果证明了该文方法在实际数据上的有效性,可以对复杂场景下的城市建筑物区域进行有效分割。此外,该方法也可以拓展应用于其他SAR图像像素级别的地物分割任务中。Over the recent years,high-resolution Synthetic-Aperture Radar(SAR)images have been widely applied for intelligent interpretation of urban mapping,change detection,etc.Different from optical images,the acquisition approach and object geometry of SAR images have limited the interpretation performances of the existing deep-learning methods.This paper proposes a novel building footprint generation method for highresolution SAR images.This method is based on supervised contrastive learning regularization,which aims to increase the similarities between intra-class pixels and diversities of interclass pixels.This increase will make the deep learning models focus on distinguishing building and nonbuilding pixels in latent space,and improve the classification accuracy.Based on public SpaceNet6 data,the proposed method can improve the segmentation performance by 1%compared to the other state-of-the-art methods.This improvement validates the effectiveness of the proposed method on real data.This method can be used for building segmentation in urban areas with complex scene background.Moreover,the proposed method can be extended for other types of landcover segmentation using SAR images.
关 键 词:合成孔径雷达 SAR建筑物提取 深度学习 语义分割 对比学习
分 类 号:TP753[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.255.53