检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申情[1,2] 郭文宾 楼俊钢 余强国[2] SHEN Qing;GUO Wenbin;LOU Jungang;YU Qiangguo(School of Information Engineering,Huzhou University,Huzhou 313000,China;School of Science and Engineering,Huzhou College,Huzhou 313000,China;Zhejiang Province Key Laboratory of Smart Management&Application of Modern Agricultural Resources,Huzhou 313000,China)
机构地区:[1]湖州师范学院信息工程学院,浙江湖州313000 [2]湖州学院理工学院,浙江湖州313000 [3]浙江省现代农业资源智慧管理与应用研究重点实验室,浙江湖州313000
出 处:《电信科学》2022年第2期71-83,共13页Telecommunications Science
基 金:浙江省重点研发计划项目(No.2020C01097)。
摘 要:个性化推荐已成为解决信息过载的最有效手段之一,也是海量数据挖掘研究领域的热点技术。然而传统推荐算法往往只使用用户对物品的评分信息,而缺少对用户与物品潜在特征的综合考虑。基于因子分解机、宽神经网络、交叉网络和深度神经网络的融合,提出一种新的考虑多层次潜在特征的模型,可以提取用户与物品的浅层潜在特征、低阶非线性潜在特征、线性交叉潜在特征以及高阶非线性潜在特征。在4个常用的数据集上的实验结果表明,考虑用户与物品多层次潜在特征可以有效提高个性化推荐的预测精度。最后,研究了嵌入层维度以及神经元数量等因素对新模型预测性能的影响。Personalized recommendation has become one of the most effective means to solve information overload,and it is also a hot technology in the research field of massive data mining.However,traditional recommendation algorithms often only use the user’s rating information on the item,and lack a comprehensive consideration of the potential charac-teristics of the user and the item.The factorization machine,wide neural network,crossover network and deep neural network were combined to extract the shallow latent features,low-order nonlinear latent features,linear cross latent fea-tures,and high-order nonlinear latent features of users and items.Thus,a new deep learning personalized recommenda-tion model with multilevel latent features was established.The experimental results on four commonly used data sets show that considering the multi-level potential features of users and items can effectively improve the prediction accura-cy of personalized recommendations.Finally,the influence of factors such as the dimensions of the embedding layer and the number of neurons on the prediction performance of the new model was studied.
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49