检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:洪亮[1,2,3] 冯亚飞 彭双云 楚森森[1,5] HONG Liang;FENG Yafei;PENG Shuangyun;CHU Sensen(Faculty of Geography, Yunnan Normal University, Kunming 650500, China;GIS Technology Research Center of Resource and Environment in Western China of Ministry of Education, Yunnan Normal University, Kunming 650500, China;Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming 650500, China;Kunming Information Center, Kunming 650506, China;Department of Geographic information Science, Nanjing University, Nanjing 210023, China)
机构地区:[1]云南师范大学地理学部,云南昆明650500 [2]西部资源环境地理信息技术教育部工程研究中心,云南昆明650500 [3]云南省地理空间信息技术工程技术研究中心,云南昆明650500 [4]昆明市信息中心,云南昆明650506 [5]南京大学地理信息科学系,江苏南京210023
出 处:《测绘学报》2022年第2期224-237,共14页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(41861048,41971369);云南省中青年学术技术带头人后备人才项目(202105AC160059);云南省基础研究专项重点项目(202001AS070032)。
摘 要:针对高空间分辨率遥感影像中的地物具有多尺度特性,以及各个尺度的对象特征对地物分类精度的影响具有较强的尺度效性,并结合面向对象影像分析方法和多尺度联合稀疏表示方法在高空间分辨率遥感影像分类中的各自优点,提出了一种面向对象的多尺度加权稀疏表示的高空间分辨率遥感影像分类算法。首先,采用多尺度分割算法获得多尺度分割结果并提取对象的多尺度特征;然后,根据影像对象的多尺度分割质量测度计算各尺度的对象权重,构建面向对象的多尺度加权联合稀疏表示模型;最后,采用2个国产GF-2高空间分辨率遥感数据集和1个高光谱-高空间分辨率航空遥感数据集(WashingtonD.C.数据)验证该算法的有效性。试验结果表明,与SVM、像素级稀疏表示、单尺度和多尺度对象级稀疏表示和深度学习等算法相比较,本文算法获得了较高的OA和Kappa分类精度,提高了各个尺度地物的分类精度,有效抑止了地物分类结果中的椒盐噪声现象,同时保持大尺度地物的区域性和小尺度地物的细节信息。In this paper,according to the multi-scale advantage for high spatial resolution remote sensing imagery and the influence difference among multi-scale objects for classification,the objected-oriented multi-scale weighted sparse representation classification algorithm is proposed by taking the advantages of object-based image analysis method and sparse representation classification algorithm.Firstly,the multi-scale segmentation results are obtained and the multi-scale features are extracted by the multi-scale segmentation algorithm;secondly,the object weights in each scale are computed according to multi-scale segmentation quality measure,and the objected-oriented multi-scale weighted sparse representation model is constructed;finally,the two domestic GF-2 high spatial resolution remote sensing images and one high-spatial and spectral resolution dataset(Washington D.C.data)were adopted to verify the proposed algorithm.The experiment results show that the proposed algorithm can obtain the highest classification accuracy with OA and Kappa,efficiently improve classification accuracy at each scale objects,reduce salt and pepper noise in the classification results,and respectively maintain the regional integrity in the large scale objects and the details in the small scale objects comparing with the traditional SVM,pixel sparse representation,single scale and multi-scale sparse representation and object-based deep learning methods.
关 键 词:高空间分辨率遥感影像 面向对象 多尺度分割 对象莫兰指数 加权联合稀疏表示
分 类 号:P227[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70