基于高斯求积的智能配电网三相概率潮流点估计法  被引量:10

Three-phase Probabilistic Load Flow for Smart Distribution Network Based on Gauss-quadrature-based Point Estimate Method

在线阅读下载全文

作  者:李钰洋 王增平 LI Yuyang;WANG Zengping(State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources(North China Electric Power University),Changping District,Beijing 102206,China)

机构地区:[1]新能源电力系统国家重点实验室(华北电力大学),北京市昌平区102206

出  处:《电网技术》2022年第2期709-717,共9页Power System Technology

基  金:国家电网公司总部科技项目(521710180008)。

摘  要:随着大规模风电、光伏和电动汽车的接入,智能配电网运行状态的不确定性大幅增加。文章通过分析不确定性变量的概率分布特征,提出一种基于高斯积分的概率潮流点估计法。该方法利用Gauss-Hermite求积与正态变换技术选取输入变量的估计节点和对应权重,通过多项式逼近方法估计多随机变量响应函数的输出变量统计矩。针对配电网参数不对称的特征,文章构建三相不平衡潮流模型,并论述利用基于高斯积分的点估计法计算三相不平衡概率潮流的实现流程。以改进的IEEE33节点配电系统为例进行了仿真验证,结果显示所提方法的估计精度高于传统点估计法,适用于含有非正态分布或相关性不确定变量的配电网。With the integration of large-scale wind power generation,photovoltaic generation and electric vehicles,the operational state of the smart distribution network becomes gradually uncertain.By analyzing the probability distribution characteristics of the uncertain variables,this paper proposes a probabilistic load flow(PLF)method for the distribution network based on the Gauss-quadrature-based point estimate method(GPEM).The Gauss-Hermite quadrature and the normal transformation are used to select the estimated nodes and the corresponding weights of the input variables.In the multiple random variable response function,the statistical moments of the output variables are estimated through polynomial approximation.Taking the unbalanced parameters of the distribution network into consideration,a three-phase power flow model is constructed.Then the whole process of the three-phase probabilistic load flow based on GPEM is directly given.Simulation results of a modified IEEE-33 bus system show that this method has a higher precision compared with the traditional point estimate method,and that it can solve the non-normal distribution and correlation of new sources and loads.

关 键 词:概率潮流计算 高斯求积 智能配电网 三相不平衡 点估计法 

分 类 号:TM721[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象