Convergence of the Deep BSDE method for FBSDEs with non-Lipschitz coefficients  被引量:1

在线阅读下载全文

作  者:Yifan Jiang Jinfeng Li 

机构地区:[1]Mathematical Institute,University of Oxford,Oxford OX26GG,United Kingdom [2]School of Mathematical Sciences,Fudan University,Shanghai 200433,China

出  处:《Probability, Uncertainty and Quantitative Risk》2021年第4期391-408,共18页概率、不确定性与定量风险(英文)

基  金:the EPSRC Centre for Doctoral Training in Mathematics of Random Systems:Analysis,Modelling,and Simulation(Grant No.EP/S023925/1).

摘  要:This paper is dedicated to solving high-dimensional coupled FBSDEs with non- Lipschitz diffusion coefficients numerically. Under mild conditions, we provided a posterior estimate of the numerical solution that holds for any time duration. This posterior estimate validates the convergence of the recently proposed Deep BSDE method. In addition, we developed a numerical scheme based on the Deep BSDE method and presented numerical examples in financial markets to demonstrate the high performance.

关 键 词:Forward-backward SDEs Deep neural networks Stochastic control 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象