深度梯度下降森林模型在轴承故障诊断中的应用  被引量:1

Research on the Bearing Fault Diagnosis Based on Deep SGD-Forest

在线阅读下载全文

作  者:彭启明 邵星 王翠香[2] 皋军[2] PENG Qi-ming;SHAO Xing;WANG Cui-xiang;GAO Jun(School of Mechanical Engineering,Yancheng Institute of Technology;School of Information Engineering,Yancheng Institute of Technology,Yancheng 224051,China)

机构地区:[1]盐城工学院机械工程学院 [2]盐城工学院信息工程学院,江苏盐城224051

出  处:《软件导刊》2022年第2期120-126,共7页Software Guide

基  金:国家自然科学基金项目(61502411,62076215);江苏省自然科学基金项目(20150432)。

摘  要:针对现有基于深度学习的轴承故障诊断方法不适于小样本数据且超参数过多、计算开销大的问题,提出一种基于深度梯度下降森林模型(DSGDF)的轴承故障诊断方法。在凯斯西储大学轴承数据集上对该模型的性能进行验证,结果表明,DSGDF模型平均诊断正确率达99%以上。DSGDF模型较经典深度森林模型的收敛速度更快,较其他基于神经网络的深度学习模型计算开销更小。In order to solve the problem that the existing bearing fault diagnosis methods based on deep learning are not suitable for small sample data,too many super parameters and high computational cost,a bearing fault diagnosis model based on Deep SGD-Forest(DSGDF)is proposed. The method is based on the deep forest model,and the gradient descent algorithm is integrated into the multi-grained scanning and the cascade layer to improve the convergence speed of the model. Experimental results on the bearing dataset of Case Western Reserve University show that the average diagnostic accuracy of the DSGDF model is more than 99%. Compared with the deep forest model,the DSGDF model has faster convergence speed and less computational overhead compared with other deep learning models based on neural networks.

关 键 词:深度学习 深度梯度下降森林 轴承 故障诊断 

分 类 号:TP273.5[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象